ﻻ يوجد ملخص باللغة العربية
We first show some properties such as smoothness and monotone decreasingness of the solution to the BCS-Bogoliubov gap equation for superconductivity. Moreover we give the behavior of the solution with respect to the temperature near the transition temperature. On the basis of these results, dealing with the thermodynamic potential, we then show that the transition from a normal conducting state to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity from the viewpoint of operator theory. Here we have no magnetic field and we need to introduce a cutoff $varepsilon>0$, which is sufficiently small and fixed (see Remark ref{rmk:varepsilon}). Moreover we obtain the exact and explicit expression for the gap in the specific heat at constant volume at the transition temperature.
We show that the transition from a normal conducting state to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity from the viewpoint of operator theory. Here we have no magnetic field. Moreover
In the preceding paper, introducing a cutoff, the present author gave a proof of the statement that the transition to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity on the basis of fixed-po
We show the temperature dependence such as smoothness and monotone decreasingness with respect to the temperature of the solution to the BCS-Bogoliubov gap equation for superconductivity. Here the temperature belongs to the closed interval $[0,, tau]
In the preceding papers the present author gave another proof of the existence and uniqueness of the solution to the BCS-Bogoliubov gap equation for superconductivity from the viewpoint of operator theory, and showed that the solution is partially di
We deal with the gap function and the thermodynamical potential in the BCS-Bogoliubov theory of superconductivity, where the gap function is a function of the temperature $T$ only. We show that the squared gap function is of class $C^2$ on the closed