ﻻ يوجد ملخص باللغة العربية
We prove the hydrodynamic limit for the symmetric exclusion process with long jumps given by a mean zero probability transition rate with infinite variance and in contact with infinitely many reservoirs with density $alpha$ at the left of the system and $beta$ at the right of the system. The strength of the reservoirs is ruled by $kappa$N --$theta$ > 0. Here N is the size of the system, $kappa$ > 0 and $theta$ $in$. Our results are valid for $theta$ $le$ 0. For $theta$ = 0, we obtain a collection of fractional reaction-diffusion equations indexed by the parameter $kappa$ and with Dirichlet boundary conditions. Their solutions also depend on $kappa$. For $theta$ < 0, the hydrodynamic equation corresponds to a reaction equation with Dirichlet boundary conditions. The case $theta$ > 0 is still open. For that reason we also analyze the convergence of the unique weak solution of the equation in the case $theta$ = 0 when we send the parameter $kappa$ to zero. Indeed, we conjecture that the limiting profile when $kappa$ $rightarrow$ 0 is the one that we should obtain when taking small values of $theta$ > 0.
A microscopic model of a Josephson junction between two superconducting plates is proposed and analysed. For this model, the nonequilibrium steady state of the total system is explicitly constructed and its properties are analysed. In particular, the
In this paper limiting distribution functions of field and density fluctuations are explicitly and rigorously computed for the different phases of the Bose gas. Several Gaussian and non-Gaussian distribution functions are obtained and the dependence
We extend a recent analysis of the $q$-states Potts model on an ensemble of random planar graphs with $pleqslant q$ allowed, equally weighted, spins on a connected boundary. In this paper we explore the $(q<4,pleqslant q)$ parameter space of finite-s
The AKLT spin chain is the prototypical example of a frustration-free quantum spin system with a spectral gap above its ground state. Affleck, Kennedy, Lieb, and Tasaki also conjectured that the two-dimensional version of their model on the hexagonal
In two-dimensional statistical models possessing a discretely holomorphic parafermion, we introduce a modified discrete Cauchy-Riemann equation on the boundary of the domain, and we show that the solution of this equation yields integrable boundary B