ﻻ يوجد ملخص باللغة العربية
We create and study persistent currents in a toroidal two-component Bose gas, consisting of $^{87}$Rb atoms in two different spin states. For a large spin-population imbalance we observe supercurrents persisting for over two minutes. However we find that the supercurrent is unstable for spin polarisation below a well defined critical value. We also investigate the role of phase coherence between the two spin components and show that only the magnitude of the spin-polarisation vector, rather than its orientation in spin space, is relevant for supercurrent stability.
We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects
We study the stability of persistent currents in a coherently coupled quasi-2D Bose-Einstein condensate confined in a ring trap at T=0. By numerically solving Gross-Pitaevskii equations and by analyzing the excitation spectrum obtained from diagonali
Large spin systems can exhibit unconventional types of magnetic ordering different from the ferromagnetic or Neel-like antiferromagnetic order commonly found in spin 1/2 systems. Spin-nematic phases, for instance, do not break time-reversal invarianc
Dynamical fermionization refers to the phenomenon in Tonks-Girardeau (TG) gases where, upon release from harmonic confinement, the gass momentum density profile evolves asymptotically to that of an ideal Fermi gas in the initial trap. This phenomenon
We investigate the polarons formed by immersing a spinor impurity in a ferromagnetic state of $F=1$ spinor Bose-Einstein condensate. The ground state energies and effective masses of the polarons are calculated in both weak-coupling regime and strong