ﻻ يوجد ملخص باللغة العربية
In this paper, from the $q$-gauge covariant condition we define the $q$-deformed Killing form and the second $q$-deformed Chern class for the quantum group $SU_{q}(2)$. Developing Zuminos method we introduce a $q$-deformed homotopy operator to compute the $q$-deformed Chern-Simons and the $q$-deformed cocycle hierarchy. Some recursive relations related to the generalized $q$-deformed Killing forms are derived to prove the cocycle hierarchy formulas directly. At last, we construct the $q$-gauge covariant Lagrangian and derive the $q$-deformed Yang-Mills equation. We find that the components of the singlet and the adjoint representation are separated in the $q$-deformed Chern class, $q$-deformed cocycle hierarchy and the $q$-deformed Lagrangian, although they are mixed in the commutative relations of BRST algebra.
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a
The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity
In this paper we continue the study of the model proposed in the previous paper hep-th/0002077. The model consist of a system of extended objects of diverse dimensionalities, with or without boundaries, with actions of the Chern-Simons form for a sup
Recently, a variety of deformed $T^{1,1}$ manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [arXiv:2010.05573]. We refer to the NLSMs with the integrable def