ﻻ يوجد ملخص باللغة العربية
Recently, a variety of deformed $T^{1,1}$ manifolds, with which 2D non-linear sigma models (NLSMs) are classically integrable, have been presented by Arutyunov, Bassi and Lacroix (ABL) [arXiv:2010.05573]. We refer to the NLSMs with the integrable deformed $T^{1,1}$ as the ABL model for brevity. Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros. We specify boundary conditions in the CS theory that give rise to the ABL model and derive the sigma-model background with target-space metric and anti-symmetric two-form. Finally, we present two simple examples 1) an anisotropic $T^{1,1}$ model and 2) a $G/H$ $lambda$-model. The latter one can be seen as a one-parameter deformation of the Guadagnini-Martellini-Mintchev model.
We study $eta$-deformations of principal chiral model (PCM) from the viewpoint of a 4D Chern-Simons (CS) theory. The $eta$-deformed PCM has originally been derived from the 4D CS theory by Delduc, Lacroix, Magro and Vicedo [arXiv:1909.13824]. The der
We derive the Faddeev-Reshetikhin (FR) model from a four-dimensional Chern- Simons theory with two order surface defects by following the work by Costello and Yamazaki [arXiv:1908.02289]. Then we present a trigonometric deformation of the FR model by
In this work we consider AdS$_3$ gravitational theory with certain mixed boundary conditions at spatial infinity. Using the Chern-Simons formalism of AdS$_3$ gravity, we find that these boundary conditions lead to non-trivial boundary terms, which, i
We present homogeneous Yang-Baxter deformations of the AdS$_5times$S$^5$ supercoset sigma model as boundary conditions of a 4D Chern-Simons theory. We first generalize the procedure for the 2D principal chiral model developed by Delduc et al [arXiv:1
In this paper we introduce a new method for generating gauged sigma models from four-dimensional Chern-Simons theory and give a unified action for a class of these models. We begin with a review of recent work by several authors on the classical gene