ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling Structures in Four-dimensional Simplicial Gravity

226   0   0.0 ( 0 )
 نشر من قبل Hiroshi Egawa
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Four-dimensional(4D) spacetime structures are investigated using the concept of the geodesic distance in the simplicial quantum gravity. On the analogy of the loop length distribution in 2D case, the scaling relations of the boundary volume distribution in 4D are discussed in various coupling regions i.e. strong-coupling phase, critical point and weak-coupling phase. In each phase the different scaling relations are found.



قيم البحث

اقرأ أيضاً

77 - H.S.Egawa , N.Tsuda , T.Yukawa 1998
The statistical properties of dynamically triangulated manifolds (DT mfds) in terms of the geodesic distance have been studied numerically. The string susceptibility exponents for the boundary surfaces in three-dimensional DT mfds were measured numer ically. For spherical boundary surfaces, we obtained a result consistent with the case of a two-dimensional spherical DT surface described by the matrix model. This gives a correct method to reconstruct two-dimensional random surfaces from three-dimensional DT mfds. Furthermore, a scaling property of the volume distribution of minimum neck baby universes was investigated numerically in the case of three and four dimensions, and we obtain a common scaling structure near to the critical points belonging to the strong coupling phase in both dimensions. We have evidence for the existence of a common fractal structure in three- and four-dimensional simplicial quantum gravity.
181 - H.S.Egawa , T.Hotta , T.Izubuchi 1996
Scaling relations in four-dimensional simplicial quantum gravity are proposed using the concept of the geodesic distance. Based on the analogy of a loop length distribution in the two-dimensional case, the scaling relations of the boundary volume dis tribution in four dimensions are discussed in three regions: the strong-coupling phase, the critical point and the weak-coupling phase. In each phase a different scaling behavior is found.
75 - H.S.Egawa , N.Tsuda 1997
A model of simplicial quantum gravity in three dimensions is investigated numerically based on the technique of the dynamical triangulation (DT). We are concerned with the surfaces appearing on boundaries (i.e., sections) of three-dimensional DT mani fold with $S^{3}$ topology. A new scaling behavior of genus distributions of boundary surfaces is found.Furthermore, these surfaces are compared with the random surfaces generated by the two-dimensional DT method which are well known as a correct discretized method of the two-dimensional quantum gravity.
136 - S.Oda , N.Tsuda , T.Yukawa 1997
The string susceptibility exponents of dynamically triangulated 2-dimensional surfaces with various topologies, such as a sphere, torus and double-torus, were calculated by the grand-canonical Monte Carlo method. These simulations were made for surfa ces coupled to $d$-Ising spins ($d$=0,1,2,3,5). In each simulation the area of surface was constrained to within 1000 to 3000 of triangles, while maintaining the detailed-balance condition. The numerical results show excellent agreement with theoretical predictions as long as $d leq 2$.
52 - R. De Pietri 2000
The attempt of extending to higher dimensions the matrix model formulation of two-dimensional quantum gravity leads to the consideration of higher rank tensor models. We discuss how these models relate to four dimensional quantum gravity and the prec ise conditions allowing to associate a four-dimensional simplicial manifold to Feynman diagrams of a rank-four tensor model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا