ﻻ يوجد ملخص باللغة العربية
Scaling relations in four-dimensional simplicial quantum gravity are proposed using the concept of the geodesic distance. Based on the analogy of a loop length distribution in the two-dimensional case, the scaling relations of the boundary volume distribution in four dimensions are discussed in three regions: the strong-coupling phase, the critical point and the weak-coupling phase. In each phase a different scaling behavior is found.
A thorough numerical examination for the field theory of 4D quantum gravity (QG) with a special emphasis on the conformal mode dependence has been studied. More clearly than before, we obtain the string susceptibility exponent of the partition functi
Four-dimensional(4D) spacetime structures are investigated using the concept of the geodesic distance in the simplicial quantum gravity. On the analogy of the loop length distribution in 2D case, the scaling relations of the boundary volume distribut
Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N_X) and gauge fields (N_A) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent gamma^{(4)} is estimated. Furtherm
The statistical properties of dynamically triangulated manifolds (DT mfds) in terms of the geodesic distance have been studied numerically. The string susceptibility exponents for the boundary surfaces in three-dimensional DT mfds were measured numer
The fractal properties of four-dimensional Euclidean simplicial manifold generated by the dynamical triangulation are analyzed on the geodesic distance D between two vertices instead of the usual scale between two simplices. In order to make more una