ﻻ يوجد ملخص باللغة العربية
A model of simplicial quantum gravity in three dimensions is investigated numerically based on the technique of the dynamical triangulation (DT). We are concerned with the surfaces appearing on boundaries (i.e., sections) of three-dimensional DT manifold with $S^{3}$ topology. A new scaling behavior of genus distributions of boundary surfaces is found.Furthermore, these surfaces are compared with the random surfaces generated by the two-dimensional DT method which are well known as a correct discretized method of the two-dimensional quantum gravity.
A model of simplicial quantum gravity in three dimensions(3D) was investigated numerically based on the technique of dynamical triangulation (DT). We are concerned with the genus of surfaces appearing on boundaries (i.e., sections) of a 3D DT manifol
Four-dimensional(4D) spacetime structures are investigated using the concept of the geodesic distance in the simplicial quantum gravity. On the analogy of the loop length distribution in 2D case, the scaling relations of the boundary volume distribut
The string susceptibility exponents of dynamically triangulated 2-dimensional surfaces with various topologies, such as a sphere, torus and double-torus, were calculated by the grand-canonical Monte Carlo method. These simulations were made for surfa
Two-dimensional random surfaces are studied numerically by the dynamical triangulation method. In order to generate various kinds of random surfaces, two higher derivative terms are added to the action. The phases of surfaces in the two-dimensional p
The statistical properties of dynamically triangulated manifolds (DT mfds) in terms of the geodesic distance have been studied numerically. The string susceptibility exponents for the boundary surfaces in three-dimensional DT mfds were measured numer