ﻻ يوجد ملخص باللغة العربية
The string susceptibility exponents of dynamically triangulated 2-dimensional surfaces with various topologies, such as a sphere, torus and double-torus, were calculated by the grand-canonical Monte Carlo method. These simulations were made for surfaces coupled to $d$-Ising spins ($d$=0,1,2,3,5). In each simulation the area of surface was constrained to within 1000 to 3000 of triangles, while maintaining the detailed-balance condition. The numerical results show excellent agreement with theoretical predictions as long as $d leq 2$.
A thorough numerical examination for the field theory of 4D quantum gravity (QG) with a special emphasis on the conformal mode dependence has been studied. More clearly than before, we obtain the string susceptibility exponent of the partition functi
The string susceptibility exponents of dynamically triangulated two dimensional surfaces with sphere and torus topology were calculated using the grand-canonical Monte Carlo method. We also simulated the model coupled to d-Ising spins (d=1,2,3,5).
A model of simplicial quantum gravity in three dimensions is investigated numerically based on the technique of the dynamical triangulation (DT). We are concerned with the surfaces appearing on boundaries (i.e., sections) of three-dimensional DT mani
Four-dimensional(4D) spacetime structures are investigated using the concept of the geodesic distance in the simplicial quantum gravity. On the analogy of the loop length distribution in 2D case, the scaling relations of the boundary volume distribut
We discuss two new DoS approaches for finite density lattice QCD. The paper extends a recent presentation of the new techniques based on Wilson fermions, while here we now discuss and test the case of finite density QCD with staggered fermions. The f