ﻻ يوجد ملخص باللغة العربية
A new approach is proposed for study structure and properties of the total squared mean curvature $W$ of surfaces in ${bf R}^3$. It is based on the generalized Weierstrass formulae for inducing surfaces. The quantity $W$ (Willmore functional) is shown to be invariant under the modified Novikov--Veselov hierarchy of integrable flows. The $1+1$--dimensional case and, in particular, Willmore tori of revolution, are studied in details. The Willmore conjecture is proved for the mKDV--invariant Willmore tori.
Quasiclassical generalized Weierstrass representation for highly corrugated surfaces with slow modulation in the three-dimensional space is proposed. Integrable deformations of such surfaces are described by the dispersionless Veselov-Novikov hierarchy.
In the neighborhood of a regular point, generalized Kahler geometry admits a description in terms of a single real function, the generalized Kahler potential. We study the local conditions for a generalized Kahler manifold to be a generalized Calabi-
Necessary conditions for a soliton on a torus $M=R^m/Lambda$ to be a soliton crystal, that is, a spatially periodic array of topological solitons in stable equilibrium, are derived. The stress tensor of the soliton must be $L^2$ orthogonal to $ee$, t
With the modified Riemann-Liouville fractional derivative, a fractional Tu formula is presented to investigate generalized Hamilton structure of fractional soliton equations. The obtained results can be reduced to the classical Hamilton hierachy of ordinary calculus.
We investigate the structure of the generalized Weierstrass semigroups at several points on a curve defined over a finite field. We present a description of these semigroups that enables us to deduce properties concerned with the arithmetical structu