ﻻ يوجد ملخص باللغة العربية
Necessary conditions for a soliton on a torus $M=R^m/Lambda$ to be a soliton crystal, that is, a spatially periodic array of topological solitons in stable equilibrium, are derived. The stress tensor of the soliton must be $L^2$ orthogonal to $ee$, the space of parallel symmetric bilinear forms on $TM$, and, further, a certain symmetric bilinear form on $ee$, called the hessian, must be positive. It is shown that, for baby Skyrme models, the first condition actually implies the second. It is also shown that, for any choice of period lattice $Lambda$, there is a baby Skyrme model which supports a soliton crystal of periodicity $Lambda$. For the three-dimensional Skyrme model, it is shown that any soliton solution on a cubic lattice which satisfies a virial constraint and is equivariant with respect to (a subgroup of) the lattice symmetries automatically satisfies both tests. This verifies in particular that the celebrated Skyrme crystal of Castillejo {it et al.}, and Kugler and Shtrikman, passes both tests.
We construct exact solitons on noncommutative tori for the type of actions arising from open string field theory. Given any projector that describes an extremum of the tachyon potential, we interpret the remaining gauge degrees of freedom as a gauge
We show that the (3+1)-dimensional gauged non-linear sigma model minimally coupled to a U(1) gauge field possesses analytic solutions representing gauged solitons at finite Baryon density whose electromagnetic field is a Force Free Plasma. These gaug
We consider noncommutative theory of a compact scalar field. The recently discovered projector solitons are interpreted as classical vacua in the model considered. Localized solutions to the projector equation are pointed out and their brane interpre
We show that the leading semiclassical behavior of soliton form factors at arbitrary momentum transfer is controlled by solutions to a new wave-like integro-differential equation that describes solitons undergoing acceleration. We work in the context
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton