ﻻ يوجد ملخص باللغة العربية
In the neighborhood of a regular point, generalized Kahler geometry admits a description in terms of a single real function, the generalized Kahler potential. We study the local conditions for a generalized Kahler manifold to be a generalized Calabi-Yau manifold and we derive a non-linear PDE that the generalized Kahler potential has to satisfy for this to be true. This non-linear PDE can be understood as a generalization of the complex Monge-Ampere equation and its solutions give supergravity solutions with metric, dilaton and H-field.
A quaternionic version of the Calabi problem on Monge-Ampere equation is introduced. It is a quaternionic Monge-Ampere equation on a compact hypercomplex manifold with an HKT-metric. The equation is non-linear elliptic of second order. For a hypercom
We prove that a Kahler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yaus theorem does not hold for supermanifolds.
We consider generalized complete intersection manifolds in the product space of projective spaces, and work out useful aspects pertaining to the cohomology of sheaves over them. First, we present and prove a vanishing theorem on the cohomology groups
We formulate a Calabi-Yau type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahl
We show that the complex cohomologies of Bott, Chern, and Aeppli and the symplectic cohomologies of Tseng and Yau arise in the context of type II string theory. Specifically, they can be used to count a subset of scalar moduli fields in Minkowski com