ترغب بنشر مسار تعليمي؟ اضغط هنا

Transmission resonances on metallic gratings with very narrow slits

73   0   0.0 ( 0 )
 نشر من قبل F. J. Garcia-Vidal
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we show how transmission metallic gratings with very narrow and deep enough slits can exhibit transmission resonances for wavelengths larger than the period of the grating. By using a transfer matrix formalism and a quasi-analytical model based on a modal expansion, we show that there are two possible ways of transferring light from the upper surface to the lower one: by the excitation of coupled surface plasmon polaritons on both surfaces of the metallic grating or by the coupling of incident plane waves with waveguide resonances located in the slits. Both mechanisms can lead to almost perfect transmittance for those particular resonances.



قيم البحث

اقرأ أيضاً

288 - T. Lopez-Rios 1998
The specular reflectivity of lamellar gratings of gold with grooves 0.5 microns wide separated by a distance of 3.5 microns was measured on the 2000 cm$^{-1}$ - 7000 cm$^{-1}$ spectral range for p-polarized light. For the first time, experimental evi dence of the excitation of electromagnetic surface shape resonances for optical frequencies is given. In these resonances the electric field is highly localized inside the grooves and is almost zero in all other regions. For grooves of depth equal to 0.6 microns, we have analyzed one of these modes whose wavelength (3.3 microns) is much greater than the lateral dimension of the grooves.
Using the Fourier modal method (FMM) we report our analysis of the transmission resonances of a plasmonic grating with sub-wavelength period and extremely narrow slits for wavelengths of the incoming, transverse magnetic (TM)-polarized, radiation ran ging from 240nm to 1500nm and incident angles from 0 degree to 90 degree. In particular, we study the case of a silver grating placed in vacuo. Consistent with previous studies on the topic, we highlight that the main mechanism for extraordinary transmission is a TM-Fabry-Perot (FP) branch supported by waveguide modes inside each slit. The TM-FP branch may also interact with surface plasmons (SPs) at the air/Ag interface through the reciprocal lattice vectors of the grating, for periods comparable with the incoming wavelength. When the TM-FP branch crosses a SP branch, a band gap is formed along the line of the SP dispersion. The gap has a Fano-Feshbach resonance at the low frequency band edge and a ridge resonance with extremely long lifetime at the high frequency band edge. We discuss the nature of these dispersion features, and in particular we describe the ridge resonance in the framework of guided-mode resonances (GMRs). In addition, we elucidate the connection of the coupling between the TM-FP branch and SPs within the Rayleigh condition. We also study the peculiar characteristics of the field localization and the energy transport in two topical examples.
194 - Yuqian Ye , Yi Jin 2009
y coating a cover layer with metallization of cut wire array, the transmission of transverse electric waves (TE; the electric field is parallel to the slits) through subwavelength slits in a thin metallic film is significantly enhanced. An 800-fold e nhanced transmission is obtained compared to the case without the cut wires. It is demonstrated that a TE incident wave is highly confined by the cut wires due to the excitation of the electric dipole-like resonance, and then effectively squeezed into and through the subwavelength slits.
Magneto-optical spectroscopy based on the transverse magneto-optical Kerr effect (TMOKE) is a sensitive method for investigation of magnetically-ordered media. However, in magnetic materials the optical transitions are usually characterized by spectr ally broad resonances with widths considerably exceeding the Zeeman splitting in the magnetic field. Here we investigate experimentally and theoretically the TMOKE in the vicinity of relatively narrow optical resonances provided by confined quantum systems. For experimental demonstration we use the exciton resonance in a (Cd,Mn)Te diluted magnetic semiconductor quantum well, where the strong exchange interaction with magnetic ions enables the giant Zeeman splitting of exciton spin states $Delta$ in magnetic fields of a few Tesla. In the weak coupling regime, when the splitting $Delta$ is smaller than the spectral broadening of the optical transitions $Gamma$, the TMOKE magnitude grows linearly with the increase of the Zeeman splitting and its spectrum has an S-shape, which remains virtually unchanged in this range. In the strong coupling regime ($Delta>Gamma$) the TMOKE magnitude saturates, while its spectrum is strongly modified resulting in the appearance of two separate peaks. The TMOKE is sensitive not only to the sample surface but can be used to probe the confined electronic states in depth if the upper layer is sufficiently transparent. Our results demonstrate that TMOKE of spectrally narrow resonances serves as a versatile tool for probing the charge and spin structure of electronic states in various confined quantum systems and can be used for spin tomography in combination with the conventional polar Kerr effect.
We report narrow quadrupolar surface lattice resonances (SLRs) under normal incidence, and the observation, for the first time, of the band reversal effect of SLRs supported by a vertical metal-insulator-metal nanograting, which is embedded in a homo geneous dielectric environment. Simulation results show that under normal incidence, quadrupolar SLR with linewidth of 1~nm and high quality factor of 979 can be excited in the near-infrared regime, and that under oblique incidence, out-of-plane dipolar SLRs of relatively large quality factors (>=150) can be launched. By varying the incidence angle, the SLR wavelength can be continuously tuned over an extremely broadband range of 750 nm, covering most of the near-infrared regime, and the quality factor decreases exponentially. Remarkably, the resonance lineshape can also be dynamically tuned from an asymmetric Fano-shaped dip to a peak, a dip/peak pair, and a perfect symmetric Lorentzian peak, suggesting the appearance of the band reversal effect. We expect the high-Q SLRs with broadband tunability and tunable lineshapes will find potential applications in enhanced nanoscale light-matter interactions in nanolasers, nonlinear optics and sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا