ﻻ يوجد ملخص باللغة العربية
In this paper we show how transmission metallic gratings with very narrow and deep enough slits can exhibit transmission resonances for wavelengths larger than the period of the grating. By using a transfer matrix formalism and a quasi-analytical model based on a modal expansion, we show that there are two possible ways of transferring light from the upper surface to the lower one: by the excitation of coupled surface plasmon polaritons on both surfaces of the metallic grating or by the coupling of incident plane waves with waveguide resonances located in the slits. Both mechanisms can lead to almost perfect transmittance for those particular resonances.
The specular reflectivity of lamellar gratings of gold with grooves 0.5 microns wide separated by a distance of 3.5 microns was measured on the 2000 cm$^{-1}$ - 7000 cm$^{-1}$ spectral range for p-polarized light. For the first time, experimental evi
Using the Fourier modal method (FMM) we report our analysis of the transmission resonances of a plasmonic grating with sub-wavelength period and extremely narrow slits for wavelengths of the incoming, transverse magnetic (TM)-polarized, radiation ran
y coating a cover layer with metallization of cut wire array, the transmission of transverse electric waves (TE; the electric field is parallel to the slits) through subwavelength slits in a thin metallic film is significantly enhanced. An 800-fold e
Magneto-optical spectroscopy based on the transverse magneto-optical Kerr effect (TMOKE) is a sensitive method for investigation of magnetically-ordered media. However, in magnetic materials the optical transitions are usually characterized by spectr
We report narrow quadrupolar surface lattice resonances (SLRs) under normal incidence, and the observation, for the first time, of the band reversal effect of SLRs supported by a vertical metal-insulator-metal nanograting, which is embedded in a homo