ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse Magneto-Optical Kerr Effect at Narrow Optical Resonances

101   0   0.0 ( 0 )
 نشر من قبل Felix Spitzer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-optical spectroscopy based on the transverse magneto-optical Kerr effect (TMOKE) is a sensitive method for investigation of magnetically-ordered media. However, in magnetic materials the optical transitions are usually characterized by spectrally broad resonances with widths considerably exceeding the Zeeman splitting in the magnetic field. Here we investigate experimentally and theoretically the TMOKE in the vicinity of relatively narrow optical resonances provided by confined quantum systems. For experimental demonstration we use the exciton resonance in a (Cd,Mn)Te diluted magnetic semiconductor quantum well, where the strong exchange interaction with magnetic ions enables the giant Zeeman splitting of exciton spin states $Delta$ in magnetic fields of a few Tesla. In the weak coupling regime, when the splitting $Delta$ is smaller than the spectral broadening of the optical transitions $Gamma$, the TMOKE magnitude grows linearly with the increase of the Zeeman splitting and its spectrum has an S-shape, which remains virtually unchanged in this range. In the strong coupling regime ($Delta>Gamma$) the TMOKE magnitude saturates, while its spectrum is strongly modified resulting in the appearance of two separate peaks. The TMOKE is sensitive not only to the sample surface but can be used to probe the confined electronic states in depth if the upper layer is sufficiently transparent. Our results demonstrate that TMOKE of spectrally narrow resonances serves as a versatile tool for probing the charge and spin structure of electronic states in various confined quantum systems and can be used for spin tomography in combination with the conventional polar Kerr effect.

قيم البحث

اقرأ أيضاً

298 - Bo Gu , Saburo Takahashi , 2017
Using density functional theory calculations, we have found an enhanced magneto-optical Kerr effect in Fe/insulator interfaces. The results of our study indicate that interfacial Fe atoms in the Fe films have a low-dimensional nature, which causes th e following two effects: (i) The diagonal component $sigma_{xx}$ of the optical conductivity decreases dramatically because the hopping integral for electrons between Fe atoms is suppressed by the low dimensionality. (ii) The off-diagonal component $sigma_{xy}$ of the optical conductivity does not change at low photon energies, but it is enhanced at photon energies around 2 eV, where we obtain enhanced orbital magnetic moments and spin-orbit correlations for the interfacial Fe atoms. A large Kerr angle develops in proportion to the ratio $sigma_{xy}/sigma_{xx}$. Our findings indicate an efficient way to enhance the effect of spin-orbit coupling at metal/insulator interfaces without using heavy elements.
179 - C. Sun , J. Kono , Y. Cho 2009
We have performed a systematic magneto-optical Kerr spectroscopy study of GaMnAs with varying Mn densities as a function of temperature, magnetic field, and photon energy. Unlike previous studies, the magnetization easy axis was perpendicular to the sample surface, allowing us to take remanent polar Kerr spectra in the absence of an external magnetic field. The remanent Kerr angle strongly depended on the photon energy, exhibiting a large positive peak at $sim1.7$ eV. This peak increased in intensity and blue-shifted with Mn doping and further blue-shifted with annealing. Using a 30-band ${bf kcdot p}$ model with antiferromagnetic $s,p$-$d$ exchange interaction, we calculated the dielectric tensor of GaMnAs in the interband transition region, assuming that our samples are in the metallic regime and the impurity band has merged with the valence band. We successfully reproduced the observed spectra without emph{ad hoc} introduction of the optical transitions originated from impurity states in the band gap. These results lead us to conclude that above-bandgap magneto-optical Kerr rotation in ferromagnetic GaMnAs is predominantly determined by interband transitions between the conduction and valence bands.
88 - Lijun Zhu , Liane Brandt , 2016
We report the engineering of the polar magnetooptical (MO) Kerr effect in perpendicularly magnetized L10-MnAl epitaxial films with remarkably tuned magnetization, strain, and structural disorder by varying substrate temperature (Ts) during molecular- beam epitaxy growth. The Kerr rotation was enhanced by a factor of up to 5 with Ts increasing from 150 to 350 oC as a direct consequence of the improvement of the magnetization. A similar remarkable tuning effect was also observed on the Kerr ellipticity and the magnitude of the complex Kerr angle, while the phase of the complex Kerr angle appears to be independent of the magnetization. The combination of the good semiconductor compatibility, the moderate coercivity of 0.3-8.2 kOe, the tunable polar MO Kerr effect of up to ~0.034o, and giant spin procession frequencies of up to ~180 GHz makes L10-MnAl films a very interesting MO material. Our results give insights on both the microscopic mechanisms of the MO Kerr effect in L10-MnAl alloys and their scientific and technological application potential in the emerging spintronics and ultrafast MO modulators.
We have studied the propagation characteristics of spin wave modes in a permalloy stripe by time-resolved magneto-optical Kerr effect techniques. We observe a beating interference pattern in the time domain under the influence of an electrical square pulse excitation at the center of the stripe. We also probe the non-reciprocal behavior of propagating spin waves with a dependence on the external magnetic field. Spatial dependence studies show that localized edge mode spin waves have a lower frequency than spin waves in the center of the stripe, due to the varying magnetization vector across the width of the stripe.
When a polarized light beam is incident upon the surface of a magnetic material, the reflected light undergoes a polarization rotation. This magneto-optical Kerr effect (MOKE) has been intensively studied in a variety of ferro- and ferrimagnetic mate rials because it provides a powerful probe for electronic and magnetic properties as well as for various applications including magneto-optical recording. Recently, there has been a surge of interest in antiferromagnets (AFMs) as prospective spintronic materials for high-density and ultrafast memory devices, owing to their vanishingly small stray field and orders of magnitude faster spin dynamics compared to their ferromagnetic counterparts. In fact, the MOKE has proven useful for the study and application of the antiferromagnetic (AF) state. Although limited to insulators, certain types of AFMs are known to exhibit a large MOKE, as they are weak ferromagnets due to canting of the otherwise collinear spin structure. Here we report the first observation of a large MOKE signal in an AF metal at room temperature. In particular, we find that despite a vanishingly small magnetization of $M sim$0.002 $mu_{rm B}$/Mn, the non-collinear AF metal Mn$_3$Sn exhibits a large zero-field MOKE with a polar Kerr rotation angle of 20 milli-degrees, comparable to ferromagnetic metals. Our first-principles calculations have clarified that ferroic ordering of magnetic octupoles in the non-collinear Neel state may cause a large MOKE even in its fully compensated AF state without spin magnetization. This large MOKE further allows imaging of the magnetic octupole domains and their reversal induced by magnetic field. The observation of a large MOKE in an AF metal should open new avenues for the study of domain dynamics as well as spintronics using AFMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا