ﻻ يوجد ملخص باللغة العربية
y coating a cover layer with metallization of cut wire array, the transmission of transverse electric waves (TE; the electric field is parallel to the slits) through subwavelength slits in a thin metallic film is significantly enhanced. An 800-fold enhanced transmission is obtained compared to the case without the cut wires. It is demonstrated that a TE incident wave is highly confined by the cut wires due to the excitation of the electric dipole-like resonance, and then effectively squeezed into and through the subwavelength slits.
Recent numerical studies have demonstrated the possibility of achieving substantial enhancements in the transmission of transverse-electric-polarized electromagnetic fields through subwavelength slits in a thin metallic screen by placing single or pa
We present a concrete picture of spoof surface plasmons (SSPs) combined with cavity resonance to clarify the basic mechanism underlying extraordinary light transmission through metal films with subwavelength slits or holes. This picture may indicate
We theoretically investigate second harmonic generation that originates from the nonlinear, magnetic Lorentz force term from single and multiple apertures carved on thick, opaque metal substrates. The linear transmission properties of apertures on me
Using a holographic approach, we experimentally study the near-field intensity distribution of light squeezed through an isolated subwavelength plasmonic hole in a thin metallic film. Our experiments revealed an in-plane electric dipole moment excite
Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrate enhancement (suppression) by as much as a factor of 6