ترغب بنشر مسار تعليمي؟ اضغط هنا

Repulsive particles on a two-dimensional lattice

44   0   0.0 ( 0 )
 نشر من قبل Greg Watson
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. I. Watson




اسأل ChatGPT حول البحث

The problem of finding the minimum-energy configuration of particles on a lattice, subject to a generic short-ranged repulsive interaction, is studied analytically. The study is relevant to charge ordered states of interacting fermions, as described by the spinless Falicov-Kimball model. For a range of particle density including the half-filled case, it is shown that the minimum-energy states coincide with the large-U neutral ground state ionic configurations of the Falicov-Kimball model, thus providing a characterization of the latter as ``most homogeneous ionic arrangements. These obey hierarchical rules, leading to a sequence of phases described by the Farey tree. For lower densities, a new family of minimum-energy configurations is found, having the novel property that they are aperiodic even when the particle density is a rational number. In some cases there occurs local phase separation, resulting in an inherent sensitivity of the ground state to the detailed form of the interaction potential.

قيم البحث

اقرأ أيضاً

Microfabricated ion traps are a major advancement towards scalable quantum computing with trapped ions. The development of more versatile ion-trap designs, in which tailored arrays of ions are positioned in two dimensions above a microfabricated surf ace, would lead to applications in fields as varied as quantum simulation, metrology and atom-ion interactions. Current surface ion traps often have low trap depths and high heating rates, due to the size of the voltages that can be applied to them, limiting the fidelity of quantum gates. Here we report on a fabrication process that allows for the application of very high voltages to microfabricated devices in general and use this advance to fabricate a 2D ion trap lattice on a microchip. Our microfabricated architecture allows for reliable trapping of 2D ion lattices, long ion lifetimes, rudimentary shuttling between lattice sites and the ability to deterministically introduce defects into the ion lattice.
Motivated by recent experimental development, we investigate spin-orbit coupled repulsive Fermi atoms in a one-dimensional optical lattice. Using the density-matrix renormalization group method, we calculate momentum distribution function, gap, and s pin-correlation function to reveal rich ground-state properties. We find that spin-orbit coupling (SOC) can generate unconventional momentum distribution, which depends crucially on the filling. We call the corresponding phase with zero gap the SOC-induced metallic phase. We also show that SOC can drive the system from the antiferromagnetic to ferromagnetic Mott insulators with spin rotating. As a result, a second-order quantum phase transition between the spin-rotating ferromagnetic Mott insulator and the SOC-induced metallic phase is predicted at the strong SOC. Here the spin rotating means that the spin orientations of the nearest-neighbor sites are not parallel or antiparallel, i.e., they have an intersection angle $theta in (0,pi )$. Finally, we show that the momentum $k_{mathrm{peak}}$, at which peak of the spin-structure factor appears, can also be affected dramatically by SOC. The analytical expression of this momentum with respect to the SOC strength is also derived. It suggests that the predicted spin-rotating ferromagnetic ($k_{mathrm{peak}% }<pi /2$) and antiferromagnetic ($pi /2<k_{mathrm{peak}}<pi $) correlations can be detected experimentally by measuring the SOC-dependent spin-structure factor via the time-of-flight imaging.
This study concerns the two-body scattering of particles in a one-dimensional periodic potential. A convenient ansatz allows for the separation of center-of-mass and relative motion, leading to a discrete Schrodinger equation in the relative motion t hat resembles a tight-binding model. A lattice Greens function is used to develop the Lippmann-Schwinger equation, and ultimately derive a multi-band scattering K-matrix which is described in detail in the two-band approximation. Two distinct scattering lengths are defined according the limits of zero relative quasi-momentum at the top and bottom edges of the two-body collision band. Scattering resonances occur in the collision band when the energy is coincident with a bound state attached to another higher or lower band. Notably, repulsive on-site interactions in an energetically closed lower band lead to collision resonances in an excited band.
126 - L. Barbiero , L. DellAnna 2016
We study the real time evolution of the correlation functions in a globally quenched interacting one dimensional lattice system by means of time adaptive density matrix renormalization group. We find a clear light-cone behavior quenching the repulsiv e interaction from the gapped density wave regime. The spreading velocity increases with the final values of the interaction and then saturates at a certain finite value. In the case of a Luttinger liquid phase as the initial state, for strong repulsive interaction quenches, a more complex dynamics occurs as a result of bound state formations. From the other side in the attractive regime, depending on where connected correlation functions are measured, one can observe a delay in the starting time evolution and a coexistence of ballistic and localized signals.
116 - Daniel Malz , Adam Smith 2020
Previous theoretical and experimental research has shown that current NISQ devices constitute powerful platforms for analogue quantum simulation. With the exquisite level of control offered by state-of-the-art quantum computers, we show that one can go further and implement a wide class of Floquet Hamiltonians, or timedependent Hamiltonians in general. We then implement a single-qubit version of these models in the IBM Quantum Experience and experimentally realize a temporal version of the Bernevig-Hughes-Zhang Chern insulator. From our data we can infer the presence of a topological transition, thus realizing an earlier proposal of topological frequency conversion by Martin, Refael, and Halperin. Our study highlights promises and limitations when studying many-body systems through multi-frequency driving of quantum computers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا