ﻻ يوجد ملخص باللغة العربية
We study the real time evolution of the correlation functions in a globally quenched interacting one dimensional lattice system by means of time adaptive density matrix renormalization group. We find a clear light-cone behavior quenching the repulsive interaction from the gapped density wave regime. The spreading velocity increases with the final values of the interaction and then saturates at a certain finite value. In the case of a Luttinger liquid phase as the initial state, for strong repulsive interaction quenches, a more complex dynamics occurs as a result of bound state formations. From the other side in the attractive regime, depending on where connected correlation functions are measured, one can observe a delay in the starting time evolution and a coexistence of ballistic and localized signals.
We consider the motion of a test particle in a one-dimensional system of equal-mass point particles. The test particle plays the role of a microscopic piston that separates two hard-point gases with different concentrations and arbitrary initial velo
We study the temporal evolution of the mutual information (MI) in a one-dimensional Kitaev chain, coupled to a fermionic Markovian bath, subsequent to a global quench of the chemical potential. In the unitary case, the MI (or equivalently the biparti
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady stat
The equilibrium properties of a Janus fluid confined to a one-dimensional channel are exactly derived. The fluid is made of particles with two faces (active and passive), so that the pair interaction is that of hard spheres, except if the two active
We consider a system of one-dimensional fermions moving in one direction, such as electrons at the edge of a quantum Hall system. At sufficiently long time scales the system is brought to equilibrium by weak interactions between the particles, which