ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering of two particles in a 1D lattice

68   0   0.0 ( 0 )
 نشر من قبل Seth Rittenhouse
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This study concerns the two-body scattering of particles in a one-dimensional periodic potential. A convenient ansatz allows for the separation of center-of-mass and relative motion, leading to a discrete Schrodinger equation in the relative motion that resembles a tight-binding model. A lattice Greens function is used to develop the Lippmann-Schwinger equation, and ultimately derive a multi-band scattering K-matrix which is described in detail in the two-band approximation. Two distinct scattering lengths are defined according the limits of zero relative quasi-momentum at the top and bottom edges of the two-body collision band. Scattering resonances occur in the collision band when the energy is coincident with a bound state attached to another higher or lower band. Notably, repulsive on-site interactions in an energetically closed lower band lead to collision resonances in an excited band.

قيم البحث

اقرأ أيضاً

We investigate the influence of atomic motion on precision Rabi spectroscopy of ultracold fermionic atoms confined in a deep, one dimensional (1D) optical lattice. We analyze the spectral components of longitudinal sideband spectra and present a mode l to extract information about the transverse motion and sample temperature from their structure. Rabi spectroscopy of the clock transition itself is also influenced by atomic motion in the weakly confined transverse directions of the optical lattice. By deriving Rabi flopping and Rabi lineshapes of the carrier transition, we obtain a model to quantify trap state dependent excitation inhomogeneities. The inhomogeneously excited ultracold fermions become distinguishable, which allows s-wave collisions. We derive a detailed model of this process and explain observed density shift data in terms of a dynamic mean field shift of the clock transition.
43 - G. I. Watson 1996
The problem of finding the minimum-energy configuration of particles on a lattice, subject to a generic short-ranged repulsive interaction, is studied analytically. The study is relevant to charge ordered states of interacting fermions, as described by the spinless Falicov-Kimball model. For a range of particle density including the half-filled case, it is shown that the minimum-energy states coincide with the large-U neutral ground state ionic configurations of the Falicov-Kimball model, thus providing a characterization of the latter as ``most homogeneous ionic arrangements. These obey hierarchical rules, leading to a sequence of phases described by the Farey tree. For lower densities, a new family of minimum-energy configurations is found, having the novel property that they are aperiodic even when the particle density is a rational number. In some cases there occurs local phase separation, resulting in an inherent sensitivity of the ground state to the detailed form of the interaction potential.
Recently, p-wave cold collisions were shown to dominate the density-dependent shift of the clock transition frequency in a 171Yb optical lattice clock. Here we demonstrate that by operating such a system at the proper excitation fraction, the cold co llision shift is canceled below the 5x10^{-18} fractional frequency level. We report inelastic two-body loss rates for 3P0-3P0 and 1S0-3P0 scattering. We also measure interaction shifts in an unpolarized atomic sample. Collision measurements for this spin-1/2 171Yb system are relevant for high performance optical clocks as well as strongly-interacting systems for quantum information and quantum simulation applications.
We construct operators for simulating the scattering of two hadrons with spin on the lattice. Three methods are shown to give the consistent operators for PN, PV, VN and NN scattering, where P, V and N denote pseudoscalar, vector and nucleon. Explici t expressions for operators are given for all irreducible representations at lowest two relative momenta. Each hadron has a good helicity in the first method. The hadrons are in a certain partial wave L with total spin S in the second method. These enable the physics interpretations of the operators obtained from the general projection method. The correct transformation properties of the operators in all three methods are proven. The total momentum of two hadrons is restricted to zero since parity is a good quantum number in this case.
37 - R. G. Unanyan , J. Otterbach , 2009
We present a general proof that Dirac particles cannot be localized below their Compton length by symmetric but otherwise arbitrary scalar potentials. This proof does not invoke the Heisenberg uncertainty relation and thus does not rely on the nonrel ativistic linear momentum relation. Further it is argued that the result is also applicable for more general potentials, as e.g. generated by nonlinear interactions. Finally a possible realisation of such a system is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا