ﻻ يوجد ملخص باللغة العربية
Motivated by recent experimental development, we investigate spin-orbit coupled repulsive Fermi atoms in a one-dimensional optical lattice. Using the density-matrix renormalization group method, we calculate momentum distribution function, gap, and spin-correlation function to reveal rich ground-state properties. We find that spin-orbit coupling (SOC) can generate unconventional momentum distribution, which depends crucially on the filling. We call the corresponding phase with zero gap the SOC-induced metallic phase. We also show that SOC can drive the system from the antiferromagnetic to ferromagnetic Mott insulators with spin rotating. As a result, a second-order quantum phase transition between the spin-rotating ferromagnetic Mott insulator and the SOC-induced metallic phase is predicted at the strong SOC. Here the spin rotating means that the spin orientations of the nearest-neighbor sites are not parallel or antiparallel, i.e., they have an intersection angle $theta in (0,pi )$. Finally, we show that the momentum $k_{mathrm{peak}}$, at which peak of the spin-structure factor appears, can also be affected dramatically by SOC. The analytical expression of this momentum with respect to the SOC strength is also derived. It suggests that the predicted spin-rotating ferromagnetic ($k_{mathrm{peak}% }<pi /2$) and antiferromagnetic ($pi /2<k_{mathrm{peak}}<pi $) correlations can be detected experimentally by measuring the SOC-dependent spin-structure factor via the time-of-flight imaging.
Understanding novel pairings in attractive degenerate Fermi gases is crucial for exploring rich superfluid physics. In this report, we reveal unconventional pairings induced by spin-orbit coupling (SOC) in a one-dimensional optical lattice, using a s
The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condens
We investigate Rashba spin-orbit coupled Fermi gases in square optical lattice by using the determinant quantum Monte Carlo (DQMC) simulations which is free of the sign-problem. We show that the Berezinskii-Kosterlitz-Thoules phase transition tempera
Time evolution of spin-orbit-coupled cold atoms in an optical lattice is studied, with a two-band energy spectrum having two avoided crossings. A force is applied such that the atoms experience two consecutive Landau-Zener tunnelings while transversi
Majorana fermions are promising candidates for storing and processing information in topological quantum computation. The ability to control such individual information carriers in trapped ultracold atomic Fermi gases is a novel theme in quantum info