ﻻ يوجد ملخص باللغة العربية
Matter-wave interferometers reveal some of the most fascinating phenomena of the quantum world. Phase shifts due to rotation (the Sagnac effect) for neutrons, free atoms and superfluid 3He reveal the connection of matter waves to a non-rotating inertial frame. In addition, phase shifts in electron waves due to magnetic vector potentials (the Aharonov-Bohm effect) show that physical states can be modified in the absence of classical forces. We report here the observation of interference induced by the Earths rotation in superfluid 4He at 2 K, a temperature 2000 times higher than previously achieved with 3He. This interferometer, an analog of a dc-SQUID, employs a recently reported phenomenon wherein superfluid 4He exhibits quantum oscillations in an array of sub-micron apertures. We find that the interference pattern persists not only when the aperture array current-phase relation is a sinusoidal function characteristic of the Josephson effect, but also at lower temperatures where it is linear and oscillations occur by phase slips. The modest requirements for the interferometer (2 K cryogenics and fabrication of apertures at the level of 100nm) and its potential resolution suggest that, when engineering challenges such as vibration isolation are met, superfluid 4He interferometers could become important scientific probes.
Fundamental considerations predict that macroscopic quantum systems such as superfluids and the electrons in superconductors will exhibit oscillatory motion when pushed through a small constriction. Here we report the observation of these oscillation
We find that a temperature differential can drive superfluid oscillations in 4He. The oscillations are excited by a heater which causes a time dependent temperature differential across an array of 70nm apertures. By measuring the oscillation frequenc
The rich dynamics of flow between two weakly coupled macroscopic quantum reservoirs has led to a range of important technologies. Practical development has so far been limited to superconducting systems, for which the basic building block is the so-c
The dynamics of superfluid 4He at and above the Landau quasiparticle regime is investigated by high precision inelastic neutron scattering measurements of the dynamic structure factor. A highly structured response is observed above the familiar phono
We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ~ 70 % of the superconducting transition temperature (TC) of 3.4 K. We demonstrate saturation of the system detection effic