ﻻ يوجد ملخص باللغة العربية
The rich dynamics of flow between two weakly coupled macroscopic quantum reservoirs has led to a range of important technologies. Practical development has so far been limited to superconducting systems, for which the basic building block is the so-called superconducting Josephson weak link. With the recent observation of quantum oscillations in superfluid 4He near 2K, we can now envision analogous practical superfluid helium devices. The characteristic function which determines the dynamics of such systems is the current-phase relation Is(phi), which gives the relationship between the superfluid current Is flowing through a weak link and the quantum phase difference phi across it. Here we report the measurement of the current-phase relation of a superfluid 4He weak link formed by an array of nano-apertures separating two reservoirs of superfluid 4He. As we vary the coupling strength between the two reservoirs, we observe a transition from a strongly coupled regime in which Is(phi) is linear and flow is limited by 2pi phase slips, to a weak coupling regime where Is(phi) becomes the sinusoidal signature of a Josephson weak link.
We investigate experimentally the physics of quantum phase slips in one-dimensional Josephson Junction chains. These quantum phase-slips are induced by quantum phase fluctuations occurring on single junctions of the chain. In our experiment we can tu
We find that a temperature differential can drive superfluid oscillations in 4He. The oscillations are excited by a heater which causes a time dependent temperature differential across an array of 70nm apertures. By measuring the oscillation frequenc
We study quantum phase-slip (QPS) processes in a superconducting ring containing N Josephson junctions and threaded by an external static magnetic flux. In a such system, a QPS consists of a quantum tunneling event connecting two distinct classical s
We study coherent quantum phase-slips in a Josephson junction chain, including two types of quenched disorder: random spatial modulation of the junction areas and random induced background charges. Usually, the quantum phase-slip amplitude is sensiti
We study theoretically the properties of SIFS type Josephson junctions composed of two superconducting (S) electrodes separated by an insulating layer (I) and a ferromagnetic (F) film consisting of periodic magnetic domains structure with antiparalle