ترغب بنشر مسار تعليمي؟ اضغط هنا

High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K

147   0   0.0 ( 0 )
 نشر من قبل Varun Verma
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ~ 70 % of the superconducting transition temperature (TC) of 3.4 K. We demonstrate saturation of the system detection efficiency at 78 +- 2 % with a jitter of 191 ps. We find that the jitter at 2.5 K is limited by the noise of the readout, and can be improved through the use of cryogenic amplifiers. Operation of SNSPDs with high efficiency at temperatures very close to TC appears to be a unique property of amorphous WSi.



قيم البحث

اقرأ أيضاً

195 - W. J. Zhang , H. Li , L. X. You 2015
We develop single-photon detectors comprising single-mode fiber-coupled superconducting nanowires, with high system detection efficiencies at a wavelength of 940 nm. The detector comprises a 6.5-nm-thick, 110-nm-wide NbN nanowire meander fabricated o nto a Si substrate with a distributed Bragg reflector for enhancing the optical absorptance. We demonstrate that, via the design of a low filling factor (1/3) and active area ({Phi} = 10 {mu}m), the system reaches a detection efficiency of ~60% with a dark count rate of 10 Hz, a recovery time <12 ns, and a timing jitter of ~50 ps.
For photon-counting applications at ultraviolet wavelengths, there are currently no detectors that combine high efficiency (> 50%), sub-nanosecond timing resolution, and sub-Hz dark count rates. Superconducting nanowire single-photon detectors (SNSPD s) have seen success over the past decade for photon-counting applications in the near-infrared, but little work has been done to optimize SNSPDs for wavelengths below 400 nm. Here, we describe the design, fabrication, and characterization of UV SNSPDs operating at wavelengths between 250 and 370 nm. The detectors have active areas up to 56 ${mu}$m in diameter, 70 - 80% efficiency, timing resolution down to 60 ps FWHM, blindness to visible and infrared photons, and dark count rates of ~ 0.25 counts/hr for a 56 ${mu}$m diameter pixel. By using the amorphous superconductor MoSi, these UV SNSPDs are also able to operate at temperatures up to 4.2 K. These performance metrics make UV SNSPDs ideal for applications in trapped-ion quantum information processing, lidar studies of the upper atmosphere, UV fluorescent-lifetime imaging microscopy, and photon-starved UV astronomy.
We use quantum detector tomography to investigate the detection mechanism in WSi nanowire superconducting single photon detectors (SSPDs). To this purpose, we fabricated a 250nm wide and 250nm long WSi nanowire and measured its response to impinging photons with wavelengths ranging from $lambda$ = 900 nm to $lambda$ = 1650 nm. Tomographic measurements show that the detector response depends on the total excitation energy only. Moreover, for energies Et > 0.8eV the current energy relation is linear, similar to what was observed in NbN nanowires, whereas the current-energy relation deviates from linear behaviour for total energies below 0.8eV.
We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark nois e of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6times10^4$ photons/(s$cdot$mW$cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.
90 - J.J. Renema , R. Gaudio , Q. Wang 2016
We measure the maximal distance at which two absorbed photons can jointly trigger a detection event in NbN nanowire superconducting single photon detector (SSPD) microbridges by comparing the one-photon and two-photon efficiency of bridges of differe nt overall lengths, from 0 to 400 nm. We find a length of $23 pm 2$ nm. This value is in good agreement with to size of the quasiparticle cloud at the time of the detection event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا