ﻻ يوجد ملخص باللغة العربية
We discuss the roles of continuum linear elasticity and atomistic calculations in determining the formation volume and the strain energy of formation of a point defect in a crystal. Our considerations bear special relevance to defect formation under stress. The elasticity treatment is based on the Greens function solution for a center of contraction or expansion in an anisotropic solid. It makes possible the precise definition of a formation volume tensor and leads to an extension of Eshelbys result for the work done by an external stress during the transformation of a continuum inclusion (Proc. Roy. Soc. Lond. Ser. A, 241 (1226) 376, 1957). Parameters necessary for a complete continuum calculation of elastic fields around a point defect are obtained by comparing with an atomistic solution in the far field. However, an elasticity result makes it possible to test the validity of the formation volume that is obtained via atomistic calculations under various boundary conditions. It also yields the correction term for formation volume calculated under these boundary conditions. Using two types of boundary conditions commonly employed in atomistic calculations, a comparison is also made of the strain energies of formation predicted by continuum elasticity and atomistic calculations. The limitations of the continuum linear elastic treatment are revealed by comparing with atomistic calculations of the formation volume and strain energies of small crystals enclosing point defects.
During plastic deformation of crystalline materials, point defects such as vacancies and interstitials are generated by jogs on moving dislocations. A detailed model for jog formation and transport during plastic deformation was developed within the
Oxygen vacancy formation energy is an important quantity for enabling fast oxygen diffusion and oxygen catalysis in technologies like solid oxide fuel cells. Both previous literature in various systems and our calculations in LaMnO3, La0.75Sr0.25MnO3
The mechanical responses of single crystalline Body-Centered Cubic (BCC) metals, such as molybdenum (Mo), outperform other metals at high temperatures, so much so that they are considered as excellent candidates for applications under extreme conditi
The effect of elastic strain on catalytic activity of platinum (Pt) towards oxygen reduction reaction (ORR) is investigated through de-alloyed Pt-Cu thin films; stress evolution in the de-alloyed layer and the mass of the Cu removed are measured in r
Here, we report a study on the radiation resistance enhancement of Gd2Zr2O7 nanograin ceramics, in which amorphization, cell volume expansion and multi-stage helium (He) bubble formation are investigated and discussed. Gd2Zr2O7 ceramics with a series