ترغب بنشر مسار تعليمي؟ اضغط هنا

Integration of a gate electrode into carbon nanotube devices for scanning tunneling microscopy

401   0   0.0 ( 0 )
 نشر من قبل Brian LeRoy
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a fabrication process for incorporating a gate electrode into suspended single-walled carbon nanotube structures for scanning tunneling spectroscopy studies. The nanotubes are synthesized by chemical vapor deposition directly on a metal surface. The high temperature ~800 C involved in the growth process poses challenging issues such as surface roughness and integrity of the structure which are addressed in this work. We demonstrate the effectiveness of the gate on the freestanding part of the nanotubes by performing tunneling spectroscopy that reveals Coulomb blockade diamonds. Our approach enables combined scanning tunneling microscopy and gated electron transport investigations of carbon nanotubes.



قيم البحث

اقرأ أيضاً

We perform scanning gate microscopy on individual suspended carbon nanotube quantum dots. The size and position of the quantum dots can be visually identified from the concentric high conductance rings. For the ultra clean devices used in this study, two new effects are clearly identified. Electrostatic screening creates non-overlapping multiple sets of Coulomb rings from a single quantum dot. In double quantum dots, by changing the tip voltage, the interactions between the quantum dots can be tuned from the weak to strong coupling regime.
Electrical field control of the carrier density of topological insulators (TI) has greatly expanded the possible practical use of these materials. However, the combination of low temperature local probe studies and a gate tunable TI device remains ch allenging. We have overcome this limitation by scanning tunneling microscopy and spectroscopy measurements on in-situ molecular beam epitaxy growth of Bi2Se3 films on SrTiO3 substrates with pre-patterned electrodes. Using this gating method, we are able to shift the Fermi level of the top surface states by 250 meV on a 3 nm thick Bi2Se3 device. We report field effect studies of the surface state dispersion, band gap, and electronic structure at the Fermi level.
124 - N. Higashide , M. Yoshida , T. Uda 2017
Electroluminescence from individual carbon nanotubes within split-gate devices is investigated. By characterizing the air-suspended nanotubes with photoluminescence spectroscopy, chirality is identified and electroluminescence peaks are assigned. We observe electroluminescence linewidth comparable to photoluminescence, indicating negligible heating and state-mixing effects. Split-gate and bias voltage dependences are consistent with emission from an electrostatically formed $pn$-junction.
We have studied electron transport in clean single-walled carbon nanotube quantum dots. Because of the large number of Coulomb blockade diamonds simultaneously showing both shell structure and Kondo effect, we are able to perform a detailed analysis of tunneling renormalization effects. Thus determining the environment induced level shifts of this artificial atom. In shells where only one of the two orbitals is coupled strongly, we observe a marked asymmetric gate-dependence of the inelastic cotunneling lines together with a systematic gate dependence of the size (and shape) of the Coulomb diamonds. These effects are all given a simple explanation in terms of second-order perturbation theory in the tunnel coupling.
In scanning gate microscopy, where the tip of a scanning force microscope is used as a movable gate to study electronic transport in nanostructures, the shape and magnitude of the tip-induced potential are important for the resolution and interpretat ion of the measurements. Contaminations picked up during topography scans may significantly alter this potential. We present an in situ high-field treatment of the tip that improves the tip-induced potential. A quantum dot was used to measure the tip-induced potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا