ترغب بنشر مسار تعليمي؟ اضغط هنا

In Situ Treatment of a Scanning Gate Microscopy Tip

89   0   0.0 ( 0 )
 نشر من قبل Arnd Gildemeister
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In scanning gate microscopy, where the tip of a scanning force microscope is used as a movable gate to study electronic transport in nanostructures, the shape and magnitude of the tip-induced potential are important for the resolution and interpretation of the measurements. Contaminations picked up during topography scans may significantly alter this potential. We present an in situ high-field treatment of the tip that improves the tip-induced potential. A quantum dot was used to measure the tip-induced potential.

قيم البحث

اقرأ أيضاً

Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution an d reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180{deg} tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.
75 - Carolin Gold 2020
We use Scanning Gate Microscopy to demonstrate the presence of localized states arising from potential inhomogeneities in a 50nm-wide, gate-defined conducting channel in encapsulated bilayer graphene. When imaging the channel conductance under the in fluence of a local tip-induced potential, we observe ellipses of enhanced conductance as a function of the tip position. These ellipses allow us to infer the location of the localized states and to study their dependence on the displacement field. For large displacement fields, we observe that localized states tend to occur halfway into the channel. All our observations can be well explained within the framework of stochastic Coulomb blockade.
We present a detailed experimental study on the electrostatic interaction between a quantum dot and the metallic tip of a scanning force microscope. Our method allowed us to quantitatively map the tip-induced potential and to determine the spatial de pendence of the tips lever arm with high resolution. We find that two parts of the tip-induced potential can be distinguished, one that depends on the voltage applied to the tip and one that is independent of this voltage. The first part is due to the metallic tip while we interpret the second part as the effect of a charged dielectric particle on the tip. In the measurements of the lever arm we find fine structure that depends on which quantum state we study. The results are discussed in view of scanning gate experiments where the tip is used as a movable gate to study nanostructures.
This paper presents an overview of scanning-gate microscopy applied to the imaging of electron transport through buried semiconductor nanostructures. After a brief description of the technique and of its possible artifacts, we give a summary of some of its most instructive achievements found in the literature and we present an updated review of our own research. It focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. In all of the given examples, we emphasize how a local-probe approach is able to shed new, or complementary, light on transport phenomena which are usually studied by means of macroscopic conductance measurements.
We have used scanning gate microscopy to explore the local conductivity of a current-annealed graphene flake. A map of the local neutrality point (NP) after annealing at low current density exhibits micron-sized inhomogeneities. Broadening of the loc al e-h transition is also correlated with the inhomogeneity of the NP. Annealing at higher current density reduces the NP inhomogeneity, but we still observe some asymmetry in the e-h conduction. We attribute this to a hole doped domain close to one of the metal contacts combined with underlying striations in the local NP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا