ﻻ يوجد ملخص باللغة العربية
Electroluminescence from individual carbon nanotubes within split-gate devices is investigated. By characterizing the air-suspended nanotubes with photoluminescence spectroscopy, chirality is identified and electroluminescence peaks are assigned. We observe electroluminescence linewidth comparable to photoluminescence, indicating negligible heating and state-mixing effects. Split-gate and bias voltage dependences are consistent with emission from an electrostatically formed $pn$-junction.
We have measured the electroluminescence and photoluminescence of (9,7) semiconducting carbon nanotube devices and demonstrate that the electroluminescence wavelength is determined by the nanotubes chiral index (n,m). The devices were fabricated on S
A simple scalable scheme is reported for fabricating suspended carbon nanotube field effect transistors (CNT-FETs) without exposing pristine as-grown carbon nanotubes to subsequent chemical processing. Versatility and ease of the technique is demonst
Single electron transistors (SETs) fabricated from single-walled carbon nanotubes (SWNTs) can be operated as highly sensitive charge detectors reaching sensitivity levels comparable to metallic radio frequency SETs (rf-SETs). Here we demonstrate how
We have developed a fabrication process for incorporating a gate electrode into suspended single-walled carbon nanotube structures for scanning tunneling spectroscopy studies. The nanotubes are synthesized by chemical vapor deposition directly on a m
We describe a method to fabricate clean suspended single-wall carbon nanotube (SWCNT) transistors hosting a single quantum dot ranging in length from a few 10s of nm down to $approx$ 3 nm. We first align narrow gold bow-tie junctions on top of indivi