ﻻ يوجد ملخص باللغة العربية
The level of current understanding of the physics of time-dependent strongly correlated quantum systems is far from complete, principally due to the lack of effective controlled approaches. Recently, there has been progress in the development of approaches for one-dimensional systems. We describe recent developments in the construction of numerical schemes for general (one-dimensional) Hamiltonians: in particular, schemes based on exact diagonalization techniques and on the density matrix renormalization group method (DMRG). We present preliminary results for spinless fermions with nearest-neighbor-interaction and investigate their accuracy by comparing with exact results.
Many-body localization is a striking mechanism that prevents interacting quantum systems from thermalizing. The absence of thermalization behaviour manifests itself, for example, in a remanence of local particle number configurations, a quantity that
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent int
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons, and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter we develop a semiclas
A gapped many-body system is described by path integral on a space-time lattice $C^{d+1}$, which gives rise to a partition function $Z(C^{d+1})$ if $partial C^{d+1} =emptyset$, and gives rise to a vector $|Psirangle$ on the boundary of space-time if
Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect them also to differ in terms of