ﻻ يوجد ملخص باللغة العربية
Many-body localization is a striking mechanism that prevents interacting quantum systems from thermalizing. The absence of thermalization behaviour manifests itself, for example, in a remanence of local particle number configurations, a quantity that is robust over a parameter range. Local particle numbers are directly accessible in programmable quantum simulators, in systems of cold atoms even in two spatial dimensions. Yet, the classical simulation aimed at building trust in quantum simulations is highly challenging. In this work, we present a comprehensive tensor network simulation of a many-body localized systems in two spatial dimensions using a variant of an iPEPS algorithm. The required translational invariance can be restored by implementing the disorder into an auxiliary spin system, providing an exact disorder average under dynamics. We can quantitatively assess signatures of many-body localization for the infinite system: Our methods are powerful enough to provide crude dynamical estimates for the transition between localized and ergodic phases. Interestingly, in this setting of finitely many disorder values, which we also compare with simulations involving non-interacting fermions and for which we discuss the emergent physics, localization emerges in the interacting regime, for which we provide an intuitive argument, while Anderson localization is absent.
We investigate a spatial subsystem entropy extracted from the one-particle density matrix (OPDM) in one-dimensional disordered interacting fermions that host a many-body localized (MBL) phase. Deep in the putative MBL regime, this OPDM entropy exhibi
We compute and compare the decay lengths of several correlation functions and effective coupling constants in the many-body localized (MBL) phase. To this end, we consider the distribution of the logarithms of these couplings and correlators: in each
Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect them also to differ in terms of
We experimentally study the effects of coupling one-dimensional Many-Body Localized (MBL) systems with identical disorder. Using a gas of ultracold fermions in an optical lattice, we artifically prepare an initial charge density wave in an array of 1
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify