ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Coherence in Ergodic and Many-Body Localized Systems

120   0   0.0 ( 0 )
 نشر من قبل Eduardo Mucciolo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect them also to differ in terms of their coherences in a given basis. Here, we numerically calculate different measures of quantum coherence in the excited eigenstates of an interacting disordered Hamiltonian as a function of the disorder. We show that quantum coherence can be used as an order parameter to detect the well-studied ergodic to many-body-localized phase transition. We also perform quantum quench studies to distinguish the behavior of coherence in thermalized and localized phases. We then present a protocol to calculate measurement-based localizable coherence to investigate the thermal and many-body localized phases. The protocol allows one to investigate quantum correlations experimentally in a non-destructive way, in contrast to measures that require tracing out a subsystem, which always destroys coherence and correlation.



قيم البحث

اقرأ أيضاً

We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify some landmarks within the MBL regime. Our first landmark is an estimate of where the MBL phase becomes unstable to avalanches, obtained by measuring the slowest relaxation rate of a finite chain coupled to an infinite bath at one end. Our estimates indicate that the actual MBL-to-thermal phase transition, in infinite-length systems, occurs much deeper in the MBL regime than has been suggested by most previous studies. Our other landmarks involve system-wide resonances. We find that the effective matrix elements producing eigenstates with system-wide resonances are enormously broadly distributed. This means that the onset of such resonances in typical samples occurs quite deep in the MBL regime, and the first such resonances typically involve rare pairs of eigenstates that are farther apart in energy than the minimum gap. Thus we find that the resonance properties define two landmarks that divide the MBL regime in to three subregimes: (i) at strongest disorder, typical samples do not have any eigenstates that are involved in system-wide many-body resonances; (ii) there is a substantial intermediate regime where typical samples do have such resonances, but the pair of eigenstates with the minimum spectral gap does not; and (iii) in the weaker randomness regime, the minimum gap is involved in a many-body resonance and thus subject to level repulsion. Nevertheless, even in this third subregime, all but a vanishing fraction of eigenstates remain non-resonant and the system thus still appears MBL in many respects. Based on our estimates of the location of the avalanche instability, it might be that the MBL phase is only part of subregime (i).
Many-body localization is a striking mechanism that prevents interacting quantum systems from thermalizing. The absence of thermalization behaviour manifests itself, for example, in a remanence of local particle number configurations, a quantity that is robust over a parameter range. Local particle numbers are directly accessible in programmable quantum simulators, in systems of cold atoms even in two spatial dimensions. Yet, the classical simulation aimed at building trust in quantum simulations is highly challenging. In this work, we present a comprehensive tensor network simulation of a many-body localized systems in two spatial dimensions using a variant of an iPEPS algorithm. The required translational invariance can be restored by implementing the disorder into an auxiliary spin system, providing an exact disorder average under dynamics. We can quantitatively assess signatures of many-body localization for the infinite system: Our methods are powerful enough to provide crude dynamical estimates for the transition between localized and ergodic phases. Interestingly, in this setting of finitely many disorder values, which we also compare with simulations involving non-interacting fermions and for which we discuss the emergent physics, localization emerges in the interacting regime, for which we provide an intuitive argument, while Anderson localization is absent.
Non-Hermtian (NH) Hamiltonians effectively describing the physics of dissipative systems have become an important tool with applications ranging from classical meta-materials to quantum many-body systems. Exceptional points, the NH counterpart of spe ctral degeneracies, are among the paramount phenomena unique to the NH realm. While realizations of second-order exceptional points have been reported in a variety of microscopic models, higher-order ones have largely remained elusive in the many-body context, as they in general require fine tuning in high-dimensional parameter spaces. Here, we propose a microscopic model of correlated fermions in three spatial dimensions and demonstrate the occurrence of interaction-induced fourth-order exceptional points that are protected by chiral symmetry. We demonstrate their stability against symmetry breaking perturbations and investigate their characteristic analytical and topological properties.
We compute and compare the decay lengths of several correlation functions and effective coupling constants in the many-body localized (MBL) phase. To this end, we consider the distribution of the logarithms of these couplings and correlators: in each case the log-coupling follows a normal distribution with mean and variance that grow linearly with separation. Thus, a localization length is asymptotically sharply defined for each of these quantities. These localization lengths differ numerically from one another, but all of them remain short up to the numerically observed MBL transition, indicating stability of the MBL phase against isolated ergodic inclusions. We also show how these broad distributions may be extracted using interferometric probes such as double electron-electron resonance (DEER) and the statistics of local spin precession frequencies.
We report in this paper our numerical analysis of energy level spacing statistics for the one-dimensional spin-$1/2$ XXZ model in random on-site longitudinal magnetic fields $B_i$ ($-hleq B_ileq h$)). We concentrate on the strong disorder limit $J_{p erp}<<J_z,h)$ where $J_z$ and $J_{perp}$ are the (nearest neighbor) spin interaction strength in $z$- and planar ($xy$)- directions, respectively. The system is expected to be in a many-body localized (MBL) state in this parameter regime. By analyzing the energy-level spacing statistics as a function of strength of random magnetic field $h$, energy of the many-body state $E$, the number of spin-$uparrow$ particles in the system $M=sum_i(s_i^z+{1over2})$ and the spin interaction strengths $J_z$ and $J_{perp}$, we show that there exists a small parameter region $J_zsim h$ where ergodic behaviour emerges at the middle of the many-body energy spectrum when $Msim{Nover2}$ ($N=$ length of spin chain). The emerging ergodic phase shows qualitatively different behaviour compared with the usual ergodic phase that exists in the weak-disorder limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا