ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder in quantum many-body systems

364   0   0.0 ( 0 )
 نشر من قبل Thomas Vojta
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thomas Vojta




اسأل ChatGPT حول البحث

Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent interesting new quantum states of matter from forming and to smear out sharp features associated with the phase transitions between them. However, disorder is also responsible for a variety of interesting novel phenomena that do not have clean counterparts. These include Anderson localization of single particle wave functions, many-body localization in isolated many-body systems, exotic quantum critical points, and glassy ground state phases. This brief review focuses on two separate but related subtopics in this field. First, we review under what conditions different types of randomness affect the stability of symmetry-broken low-temperature phases in quantum many-body systems and the stability of the corresponding phase transitions. Second, we discuss the fate of quantum phase transitions that are destabilized by disorder as well as the unconventional quantum Griffiths phases that emerge in their vicinity.



قيم البحث

اقرأ أيضاً

Characterizing states of matter through the lens of their ergodic properties is a fascinating new direction of research. In the quantum realm, the many-body localization (MBL) was proposed to be the paradigmatic ergodicity breaking phenomenon, which extends the concept of Anderson localization to interacting systems. At the same time, random matrix theory has established a powerful framework for characterizing the onset of quantum chaos and ergodicity (or the absence thereof) in quantum many-body systems. Here we numerically study the spectral statistics of disordered interacting spin chains, which represent prototype models expected to exhibit MBL. We study the ergodicity indicator $g=log_{10}(t_{rm H}/t_{rm Th})$, which is defined through the ratio of two characteristic many-body time scales, the Thouless time $t_{rm Th}$ and the Heisenberg time $t_{rm H}$, and hence resembles the logarithm of the dimensionless conductance introduced in the context of Anderson localization. We argue that the ergodicity breaking transition in interacting spin chains occurs when both time scales are of the same order, $t_{rm Th} approx t_{rm H}$, and $g$ becomes a system-size independent constant. Hence, the ergodicity breaking transition in many-body systems carries certain analogies with the Anderson localization transition. Intriguingly, using a Berezinskii-Kosterlitz-Thouless correlation length we observe a scaling solution of $g$ across the transition, which allows for detection of the crossing point in finite systems. We discuss the observation that scaled results in finite systems by increasing the system size exhibit a flow towards the quantum chaotic regime.
We show that the magnetization of a single `qubit spin weakly coupled to an otherwise isolated disordered spin chain exhibits periodic revivals in the localized regime, and retains an imprint of its initial magnetization at infinite time. We demonstr ate that the revival rate is strongly suppressed upon adding interactions after a time scale corresponding to the onset of the dephasing that distinguishes many-body localized phases from Anderson insulators. In contrast, the ergodic phase acts as a bath for the qubit, with no revivals visible on the time scales studied. The suppression of quantum revivals of local observables provides a quantitative, experimentally observable alternative to entanglement growth as a measure of the `non-ergodic but dephasing nature of many-body localized systems.
Entanglement is usually quantified by von Neumann entropy, but its properties are much more complex than what can be expressed with a single number. We show that the three distinct dynamical phases known as thermalization, Anderson localization, and many-body localization are marked by different patterns of the spectrum of the reduced density matrix for a state evolved after a quantum quench. While the entanglement spectrum displays Poisson statistics for the case of Anderson localization, it displays universal Wigner-Dyson statistics for both the cases of many-body localization and thermalization, albeit the universal distribution is asymptotically reached within very different time scales in these two cases. We further show that the complexity of entanglement, revealed by the possibility of disentangling the state through a Metropolis-like algorithm, is signaled by whether the entanglement spectrum level spacing is Poisson or Wigner-Dyson distributed.
The existence of many-body mobility edges in closed quantum systems has been the focus of intense debate after the emergence of the description of the many-body localization phenomenon. Here we propose that this issue can be settled in experiments by investigating the time evolution of local degrees of freedom, tailored for specific energies and initial states. An interacting model of spinless fermions with exponentially long-ranged tunneling amplitudes, whose non-interacting version known to display single-particle mobility edges, is used as the starting point upon which nearest-neighbor interactions are included. We verify the manifestation of many-body mobility edges by using numerous probes, suggesting that one cannot explain their appearance as merely being a result of finite-size effects.
207 - Gaoyong Sun , Su-Peng Kou 2020
We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is inve stigated by the second derivative of ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا