ﻻ يوجد ملخص باللغة العربية
In a recent paper Castro-Neto and Jones argue that because the observability of quantum Griffiths-McCoy effects in metals is controlled by non-universal quantities, the quantum Griffiths-McCoy scenario may be a viable explanation for the non-fermi-liquid behavior observed in heavy fermion compounds. In this Comment we point out that the important non-universal quantity is the damping of the spin dynamics by the metallic electrons; quantum Griffiths-McCoy effects occur only if this is parametrically weak relative to other scales in the problem, i.e. if the spins are decoupled from the carriers. This suggests that in heavy fermion materials, where the Kondo effect leads to a strong carrier-spin coupling, quantum Griffiths-McCoy effects are unlikely to occur.
Magnetoconductance (MC) in a parallel magnetic field B has been measured in a two-dimensional electron system in Si, in the regime where the conductivity decreases as sigma (n_s,T,B=0)=sigma (n_s,T=0) + A(n_s)T^2 (n_s -- carrier density) to a non-zer
We report the observation of a metal-insulator transition in a two-dimensional electron gas in silicon. By applying substrate bias, we have varied the mobility of our samples, and observed the creation of the metallic phase when the mobility was high
The temperature dependence of conductivity $sigma (T)$ of a two-dimensional electron system in silicon has been studied in parallel magnetic fields B. At B=0, the system displays a metal-insulator transition at a critical electron density $n_c(0)$, a
The relaxations of conductivity have been studied in the glassy regime of a strongly disordered two-dimensional electron system in Si after a temporary change of carrier density during the waiting time t_w. Two types of response have been observed: a
We study the ferromagnetic phase transition in a randomly layered Heisenberg model. A recent strong-disorder renormalization group approach [Phys. Rev. B 81, 144407 (2010)] predicted that the critical point in this system is of exotic infinite-random