ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium Relaxations and Aging Effects in a Two-Dimensional Coulomb Glass

191   0   0.0 ( 0 )
 نشر من قبل Dragana Popovic
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relaxations of conductivity have been studied in the glassy regime of a strongly disordered two-dimensional electron system in Si after a temporary change of carrier density during the waiting time t_w. Two types of response have been observed: a) monotonic, where relaxations exhibit aging, i.e. dependence on history, determined by t_w and temperature; b) nonmonotonic, where a memory of the sample history is lost. The conditions that separate the two regimes have been also determined.

قيم البحث

اقرأ أيضاً

The relaxations of conductivity have been studied in a strongly disordered two-dimensional (2D) electron system in Si after excitation far from equilibrium by a rapid change of carrier density n_s at low temperatures T. The dramatic and precise depen dence of the relaxations on n_s and T strongly suggests (a) the transition to a glassy phase as T->0, and (b) the Coulomb interactions between 2D electrons play a dominant role in the observed out-of-equilibrium dynamics.
The relaxations of conductivity after a temporary change of carrier density n_s during the waiting time t_w have been studied in a strongly disordered two-dimensional electron system in Si. At low enough n_s < n_g (n_g - the glass transition density) , the nonexponential relaxations exhibit aging and memory effects at low temperatures T. The aging properties change abruptly at the critical density for the metal-insulator transition n_c < n_g. The observed complex dynamics of the electronic transport is strikingly similar to that of other systems that are far from equilibrium.
We study numerically the glass formation and depinning transition of a system of two-dimensional cluster-forming monodisperse particles in presence of pinning disorder. The pairwise interaction potential is nonmonotonic, and is motivated by the inter vortex forces in type-$1.5$ superconductors. Such systems can form cluster glasses due to the intervortex interactions following a thermal quench, without underlying disorder. We study the effects of vortex pinning in these systems. We find that a small density of pinning centers of moderate depth has limited effect on vortex glass formation, i.e., formation of vortex glasses is dominated by intervortex interactions. At higher densities pinning can significantly affect glass formation. The cluster glass depinning, under a constant driving force, is found to be plastic, with features distinct from non-cluster-forming systems such as clusters merging and breaking. We find that in general vortices with cluster-forming interaction forces can exhibit stronger pinning effects than regular vortices.
Aging effects in the relaxations of conductivity of a two-dimensional electron system in Si have been studied as a function of carrier density. They reveal an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT): (a ) while full aging is observed in the insulating regime, there are significant departures from full aging on the metallic side of the MIT, before the glassy phase disappears completely at a higher density $n_g$; (b) the amplitude of the relaxations peaks just below the MIT, and it is strongly suppressed in the insulating phase. Other aspects of aging, including large non-Gaussian noise and similarities to spin glasses, also have been discussed.
Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional electron system (2DES) in Si in the vicinity of the metal-insulator transition (MIT) persists in parallel magnetic fields B of up to 9 T. At low B, both th e glass transition density $n_g$ and $n_c$, the critical density for the MIT, increase with B such that the width of the metallic glass phase ($n_c<n_s<n_g$) increases with B. At higher B, where the 2DES is spin polarized, $n_c$ and $n_g$ no longer depend on B. Our results demonstrate that charge, as opposed to spin, degrees of freedom are responsible for glassy ordering of the 2DES near the MIT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا