ﻻ يوجد ملخص باللغة العربية
The La-2125 type La2-xDyxCa2xBa2Cu4+2xOz (0.1 < x < 0.5; LDBO) compounds have been synthesized and studied for their structural and superconducting properties by room temperature neutron diffraction, high field dc magnetization, four-probe resistivity and iodometric double titration. The Rietveld analysis of the neutron diffraction data reveals tetragonal structure for all the samples, which crystallizes into La-123 type tetragonal structure in P4/mmm space group. Iodometric double titrations were performed to determine the oxygen content values and calculate mobile charge carrier (holes) density. The superconducting transition temperatures (Tc) increases from ~ 20 K for x = 0.1 to a maximum of 75 K for x = 0.5. Flux pinning force (Fp) and critical current density (Jc), calculated from the low temperature hysteresis loops, also increases with increasing dopant concentration. The paper presents the studies on structure and superconducting properties of all LDBO compounds in light of the role of calcium in inducing superconductivity in the tetragonal non-superconducting oxide.
Structural studies on Dy-substituted La-2125 type superconductors have been carried out by neutron diffraction experiments at room temperature using a monochromatic neutron beam of wavelength lambda = 1.249 Angstroms. A series of samples with La2-xDy
Polycrystalline La2-xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x = 0.1 - 0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting tran
We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc$ superconductivity (HTSC) for a disorder-free CuO$_2$ plane based on an evaluation of local hole density ($p$) by site-selective Cu-NMR studies on multilayered copper oxide
We report an anomalous local structural response in the CuO2 planes associated with the appearance of charge inhomogeneities at low temperature in underdoped but superconducting La2-x(Sr,Ba)xCuO4. We used pair distribution function analysis of neutro
Point-contact Andreev reflection spectroscopy (PCARS) is applied to investigate the gap structure in iron pnictide single crystal superconductors of the AFe_2As_2 (A=Ba, Sr) family (Fe-122). The observed point-contact junction conductance curves, G(V