ﻻ يوجد ملخص باللغة العربية
Polycrystalline La2-xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x = 0.1 - 0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting transition temperatures in these tetragonal triple perovskite compounds increases from 32 to 62 K (Tconset values) with increasing dopant concentration. The mixing of rare earth La3+ and Pr3+/4+ ions at rare earth site (La3+) along with substitution of divalent Ca2+ results in the shrinkage of unit cell volume. The contraction of unit cell volume due to larger ion being substituted by smaller ions, gives rise to creation of pinning centers in the unit cell leading to increase in critical current density and flux pinning
Structural studies on Dy-substituted La-2125 type superconductors have been carried out by neutron diffraction experiments at room temperature using a monochromatic neutron beam of wavelength lambda = 1.249 Angstroms. A series of samples with La2-xDy
We investigated the effect of SiC nano-particle doping on the crystal lattice structure, critical temperature T_c, critical current density J_c, and flux pinning in MgB_2 superconductor. A series of MgB_{2-x}(SiC)_{x/2} samples with x = 0 to 1.0 were
A series of polycrystalline SmFeAs1-xOx bulks was prepared to systematically investigate the influence of sample density on flux pinning properties. Different sample densities were achieved by controlling the pelletizing pressure. The superconducting
Doping of MgB2 by nano-SiC and its potential for improvement of flux pinning was studied for MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10wt% nano-SiC doped MgB2 samples. Co-substitution of B by Si and C counterbalanced the effects of single-elemen
A series of high quality BaFe$_{2-x}$Ni$_x$As$_2$ pnictide superconductors were studied using magnetic relaxation and isothermal magnetic measurements in order to study the second magnetization peak (SMP) and critical current behaviour in Ni-doped 12