ﻻ يوجد ملخص باللغة العربية
We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc$ superconductivity (HTSC) for a disorder-free CuO$_2$ plane based on an evaluation of local hole density ($p$) by site-selective Cu-NMR studies on multilayered copper oxides. Multilayered systems provide us with the opportunity to research the characteristics of the disorder-free CuO$_2$ plane. The site-selective NMR is the best and the only tool used to extract layer-dependent characteristics. Consequently, we have concluded that the uniform mixing of AFM and SC is a general property inherent to a single CuO$_2$ plane in an underdoped regime of HTSC. The $T$=0 phase diagram of AFM constructed here is in quantitative agreement with the theories in a strong correlation regime which is unchanged even with mobile holes. This {it Mott physics} plays a vital role for mediating the Cooper pairs to make $T_c$ of HTSC very high. By contrast, we address from extensive NMR studies on electron-doped iron-oxypnictides La1111 compounds that the increase in $T_c$ is not due to the development of AFM spin fluctuations, but because the structural parameters, such as the bond angle $alpha$ of the FeAs$_4$ tetrahedron and the a-axis length, approach each optimum value. Based on these results, we propose that a stronger correlation in HTSC than in FeAs-based superconductors may make $T_c$ higher significantly.
We revealed novel phase deagram of Fe-pnictide high-Tc superconductor LaFe(As_{1-x}P_{x})O in wide doping level (0.3<x<1) by P-NMR. Systematic 31P-NMR studies revealed the emergence of the antiferromagnetic ordered phase (AFM-2) in 0.4 < x < 0.7 that
We discuss the novel superconducting characteristics and unusual normal-state properties of iron (Fe)-based pnictide superconductors REFeAsO$_{1-y}$ (RE=La,Pr,Nd) and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$($T_{c}=$ 38 K) by means of $^{57}$Fe-NMR and $^{75}
Charge order has recently been identified as a leading competitor of high-temperature superconductivity in moderately doped cuprates. We provide a survey of universal and materials-specific aspects of this phenomenon, with emphasis on results obtaine
We study the magnetic excitations of undoped iron oxypnictides using a three-dimensional Heisenberg model with single-ion anisotropy. Analytic forms of the spin wave dispersion, velocities, and structure factor are given. Aside from quantitative comp
Although copper and bismuth do not form any compounds at ambient conditions, two intermetallics, CuBi and Cu$_{11}$Bi$_7$, were recently synthesized at high pressures. Here we report on the discovery of additional copper-bismuth phases at elevated pr