ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of the Magnetic phase diagram of LiHoF$_4$

72   0   0.0 ( 0 )
 نشر من قبل Prabuddha Chakraborty
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of LiHoF$_4$ are believed to be well described by a long-range dipolar Ising model. We go beyond mean-field theory and calculate the phase diagram of the Ising model in a transverse field using a quantum Monte Carlo method. The relevant Ising degrees of freedom are obtained using a non-perturbative projection onto the low-lying crystal field eigenstates. We explicitly take the domain structure into account, and the strength of the near-neighbor exchange interaction is obtained as a fitting parameter. The on-site hyperfine interaction is approximately taken into account through a renormalization of the transverse applied magnetic field. Finally, we propose a spectroscopy experiment to precisely measure the most important parameter controlling the location of the phase boundary.



قيم البحث

اقرأ أيضاً

We show that, contrary to previous belief, the transition to the antiferromagnetic state of Sr$_2$IrO$_4$ in zero magnetic field does show up in the transverse resistivity. We attribute this to a change in transverse integrals associated to the magne tic ordering, which is evaluated considering hopping of the localized charge. The evolution of the resistivity anomaly associated to the magnetic transition under applied magnetic field is studied. It tracks the magnetic phase diagram, allowing to identify three different lines, notably the spin-flip line, associated with the reordering of the ferromagnetic component of the magnetization, and an intriguing line for field induced magnetism, also corroborated by magnetization measurements.
119 - J. Werner , S. Sauerland , C. Koo 2019
We report the magnetic phase diagram of single-crystalline LiFePO$_4$ in magnetic fields up to 58~T and present a detailed study of magneto-elastic coupling by means of high-resolution capacitance dilatometry. Large anomalies at tn in the thermal exp ansion coefficient $alpha$ imply pronounced magneto-elastic coupling. Quantitative analysis yields the magnetic Gruneisen parameter $gamma_{rm mag}=6.7(5)cdot 10^{-7}$~mol/J. The positive hydrostatic pressure dependence $dT_{rm N}/dp = 1.46(11)$~K/GPa is dominated by uniaxial effects along the $a$-axis. Failure of Gruneisen scaling below $approx 40$~K, i.e., below the peak temperature in the magneto-electric coupling coefficient [onlinecite{toft2015anomalous}], implies several competing degrees of freedom and indicates relevance of recently observed hybrid excitations~[onlinecite{yiu2017hybrid}]. A broad and strongly magnetic-field-dependent anomaly in $alpha$ in this temperature regime highlight the relevance of structure changes. Upon application of magnetic fields $B||b$-axis, a pronounced jump in the magnetisation implies spin-reorientation at $B_{rm SF} = 32$~T as well as a precursing phase at 29~T and $T=1.5$~K. In a two-sublattice mean-field model, the saturation field $B_{rm sat,b} = 64(2)$~T enables the determination of the effective antiferromagnetic exchange interaction $J_{rm af} = 2.68(5)$~meV as well as the anisotropies $D_{rm b} = -0.53(4)$~meV and $D_{rm c} = 0.44(8)$~meV.
Low-temperature, high-field (H[-110] <= 7.5 T), neutron diffraction experiments on single-crystal Ce0.70Pr0.30B6 are reported. Two successive incommensurate phases are found to exist in zero field. The appearance, for H >= 4.6 T at T = 2 K, of an ant iferromagnetic structure, k{AF} = (1/2, 1/2, 1/2), most likely due to an underlying antiferroquadrupolar order, is discussed in connection with recent x-ray diffraction experiments.
146 - J. Pospisil , M. Misek , M. Divis 2020
A new U-based compound of the U2Rh2Pb, a new compound of the U2T2X series was prepared in a single-crystal form. Its structure was determined as belonging to the tetragonal Mo2FeB2 structure type with the shortest U-U spacing along the c. U2Rh2Pb und ergoes an antiferromagnetic transition at TN of 20 K and exhibits an enhanced Sommerfeld coefficient 150 mJ/molK2. In contrast to the two rhodium analogues U2Rh2In and U2Rh2Sn, the easy-magnetization direction is the c with rather low value of the critical field 4.3 T of the metamagnetic transition of a spin-flip type. The observed dependences of TN and Hc on temperature and magnetic field have been used for constructing a magnetic phase diagram. The experimental observations are mostly supported by first-principles calculations.
436 - S. Gabani , S. Matas , P. Priputen 2007
Magnetic structure of single crystalline TmB4 has been studied by magnetization, magnetoresistivity and specific heat measurements. A complex phase diagram with different antiferromagnetic (AF) phases was observed below TN1 = 11.7 K. Besides the plat eau at half-saturated magnetization (1/2 MS), also plateaus at 1/9, 1/8 and 1/7 of MS were observed as function of applied magnetic field B//c. From additional neutron scattering experiments on TmB4, we suppose that those plateaus arise from a stripe structure which appears to be coherent domain boundaries between AF ordered blocks of 7 or 9 lattice constants. The received results suggest that the frustration among the Tm3+ magnetic ions, which maps to a geometrically frustrated Shastry-Sutherland lattice lead to strong competition between AF and ferromagnetic (FM) order. Thus, stripe structures in intermediate field appear to be the best way to minimize the magnetostatic energy against other magnetic interactions between the Tm ions combined with very strong Ising anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا