ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic structure and phase diagram of TmB4

312   0   0.0 ( 0 )
 نشر من قبل Slavomir Gabani
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic structure of single crystalline TmB4 has been studied by magnetization, magnetoresistivity and specific heat measurements. A complex phase diagram with different antiferromagnetic (AF) phases was observed below TN1 = 11.7 K. Besides the plateau at half-saturated magnetization (1/2 MS), also plateaus at 1/9, 1/8 and 1/7 of MS were observed as function of applied magnetic field B//c. From additional neutron scattering experiments on TmB4, we suppose that those plateaus arise from a stripe structure which appears to be coherent domain boundaries between AF ordered blocks of 7 or 9 lattice constants. The received results suggest that the frustration among the Tm3+ magnetic ions, which maps to a geometrically frustrated Shastry-Sutherland lattice lead to strong competition between AF and ferromagnetic (FM) order. Thus, stripe structures in intermediate field appear to be the best way to minimize the magnetostatic energy against other magnetic interactions between the Tm ions combined with very strong Ising anisotropy.

قيم البحث

اقرأ أيضاً

We investigate the phase diagram of TmB4, an Ising magnet on a frustrated Shastry-Sutherland lattice by neutron diffraction and magnetization experiments. At low temperature we find Neel order at low field, ferrimagnetic order at high field and an in termediate phase with magnetization plateaus at fractional values M/Msat = 1/7, 1/8, 1/9 ... and spatial stripe structures. Using an effective S = 1/2 model and its equivalent two-dimensional (2D) fermion gas we suggest that the magnetic properties of TmB4 are related to the fractional quantum Hall effect of a 2D electron gas.
Comprehensive studies of magnetic properties of GdCr3(BO3)4 single crystal have been carried out. The integrals of intrachain and interchain exchange interactions in the chromium subsystem have been determined and the strength of Cr-Gd exchange inter action has been estimated. The values of the exchange field and the effective magnetic anisotropy field of GdCr3(BO3)4 have been estimated. The electric polarization along the a axis in the longitudinal geometry of the experiment has been detected. Correlations between the electric polarization and the magnetization of the studied compound have been found. The spin-reorientation phase transition in the magnetically ordered state has been found. This transition exists for the external magnetic field applied along any crystallographic direction and the transition field depends weakly on the direction of the field. The nature of the spin-reorientation phase transition has been discussed. Magnetic phase diagram has been constructed and spin configurations for the low-field and high-field phases have been proposed.
Low-temperature, high-field (H[-110] <= 7.5 T), neutron diffraction experiments on single-crystal Ce0.70Pr0.30B6 are reported. Two successive incommensurate phases are found to exist in zero field. The appearance, for H >= 4.6 T at T = 2 K, of an ant iferromagnetic structure, k{AF} = (1/2, 1/2, 1/2), most likely due to an underlying antiferroquadrupolar order, is discussed in connection with recent x-ray diffraction experiments.
A pressure and temperature dependent Raman study of the vibrational and spin dynamics in CuGeO3 is presented. A new low temperature, high pressure phase has been identified, and a pressure-temperature phase-diagram is proposed for CuGeO3. The pressur e dependence of the effective exchange interaction, of the spin-Peierls gap, and of the spin-Peierls temperature strongly supports a model in which next nearest neighbor interactions stabilise the SP ground state. The Raman data allow for a quantitative estimate of the pressure dependence of the next nearest neighbor interactions.
We have measured temperature and magnetic field dependences of the thermal conductivity along the c-axis, kc, and that along the [110] direction, k110, of CuB2O4 single crystals in zero field and magnetic fields along the c-axis and along the [110] d irection. It has been found that the thermal conductivity is nearly isotropic and very large in zero field and that the thermal conductivity due to phonons is dominant in CuB2O4. The temperature and field dependences of kc and k110 have markedly changed at phase boundaries in the magnetic phase diagram, which has been understood to be due to the change of the mean free path of phonons caused by the change of the phonon-spin scattering rate at the phase boundaries. It has been concluded that thermal conductivity measurements are very effective for detecting magnetic phase boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا