ﻻ يوجد ملخص باللغة العربية
We have performed precision microwave spectroscopy on ultra-cold Rb-87 confined in a magnetic trap, both above and below the Bose-condensation transition. The cold collision shifts for both normal and condensed clouds were measured, which allowed the intra- and inter-state density correlations (characterized by sometimes controversial factors of two) to be determined. Additionally, temporal coherence of the normal cloud was studied, and the importance of mean-field and velocity-changing collisions in preserving coherence is discussed.
We have investigated both theoretically and experimentally dipolar relaxation in a gas of magnetically trapped chromium atoms. We have found that the large magnetic moment of 6 $mu_B$ results in an event rate coefficient for dipolar relaxation proces
We have measured magnetic trap lifetimes of ultra-cold Rb87 atoms at distances of 5-1000 microns from surfaces of conducting metals with varying resistivity. Good agreement is found with a theoretical model for losses arising from near-field magnetic
We present the first spatially resolved images of spin waves in a gas. The complete longitudinal and transverse spin field as a function of time and space is reconstructed. Frequencies and damping rates for a standing-wave mode are extracted and compared with theory.
We investigate the Zeldovich effect in the context of ultra-cold, harmonically trapped quantum gases. We suggest that currently available experimental techniques in cold-atoms research offer an exciting opportunity for a direct observation of the Zel
We demonstrate a double-trap system well suited to study cold collisions between trapped ions and trapped atoms. Using Yb$^+$ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several is