ﻻ يوجد ملخص باللغة العربية
We have measured magnetic trap lifetimes of ultra-cold Rb87 atoms at distances of 5-1000 microns from surfaces of conducting metals with varying resistivity. Good agreement is found with a theoretical model for losses arising from near-field magnetic thermal noise, confirming the complications associated with holding trapped atoms close to conducting surfaces. A dielectric surface (silicon) was found in contrast to be so benign that we are able to evaporatively cool atoms to a Bose-Einstein condensate by using the surface to selectively adsorb higher energy atoms.
We have investigated both theoretically and experimentally dipolar relaxation in a gas of magnetically trapped chromium atoms. We have found that the large magnetic moment of 6 $mu_B$ results in an event rate coefficient for dipolar relaxation proces
We have performed precision microwave spectroscopy on ultra-cold Rb-87 confined in a magnetic trap, both above and below the Bose-condensation transition. The cold collision shifts for both normal and condensed clouds were measured, which allowed the
Recent progresses on quantum control of cold atoms and trapped ions in both the scientific and technological aspects greatly advance the applications in precision measurement. Thanks to the exceptional controllability and versatility of these massive
We simulate ultra-cold interacting Bosons in quasi-one-dimensional, incommensurate optical lattices. In the tight-binding limit, these lattices have pseudo-random on-site energies and thus can potentially lead to Anderson localization. We explore the
Using a numerical implementation of the truncated Wigner approximation, we simulate the experiment reported by Ramanathan et al. in Phys. Rev. Lett. 106, 130401 (2011), in which a Bose-Einstein condensate is created in a toroidal trap and set into ro