ترغب بنشر مسار تعليمي؟ اضغط هنا

The Zeldovich effect in harmonically trapped, ultra-cold quantum gases

118   0   0.0 ( 0 )
 نشر من قبل Brandon P. van Zyl
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the Zeldovich effect in the context of ultra-cold, harmonically trapped quantum gases. We suggest that currently available experimental techniques in cold-atoms research offer an exciting opportunity for a direct observation of the Zeldovich effect without the difficulties imposed by conventional condensed matter and nuclear physics studies. We also demonstrate an interesting scaling symmetry in the level rearragements which has heretofore gone unnoticed.



قيم البحث

اقرأ أيضاً

By generalizing our automated algebra approach from homogeneous space to harmonically trapped systems, we have calculated the fourth- and fifth-order virial coefficients of universal spin-1/2 fermions in the unitary limit, confined in an isotropic ha rmonic potential. We present results for said coefficients as a function of trapping frequency (or, equivalently, temperature), which compare favorably with previous Monte Carlo calculations (available only at fourth order) as well as with our previous estimates in the untrapped limit (high temperature, low frequency). We use our estimates of the virial expansion, together with resummation techniques, to calculate the compressibility and spin susceptibility.
Spin-orbit coupling is an important ingredient in many recently discovered phenomena such as the spin-Hall effect and topological insulators. Of particular interest is topological superconductivity, with its potential application in topological quant um computation. The absence of disorder in ultra-cold atomic systems makes them ideal for quantum computation applications, however, the spin-orbit (SO) coupling schemes proposed thus far are experimentally impractical owing to large spontaneous emission rates in the alkali fermions. In this paper, we develop a scheme to generate Rashba SO coupling with a low spontaneous emission extension to a recent experiment. We show that this scheme generates a Fermi surface spin texture for $^{40}rm{K}$ atoms, which is observable in time-of-flight measurements. The chiral spin texture, together with conventional $s$-wave interactions leads to topological superconductivity and non-Abelian Majorana quasiparticles.
We numerically solve the Boltzmann equation for trapped fermions in the normal phase using the test-particle method. After discussing a couple of tests in order to estimate the reliability of the method, we apply it to the description of collective m odes in a spherical harmonic trap. The numerical results are compared with those obtained previously by taking moments of the Boltzmann equation. We find that the general shape of the response function is very similar in both methods, but the relaxation time obtained from the simulation is significantly longer than that predicted by the method of moments. It is shown that the result of the method of moments can be corrected by including fourth-order moments in addition to the usual second-order ones and that this method agrees very well with our numerical simulations.
We study a harmonically confined Bose-Bose mixture using quantum Monte Carlo methods. Our results for the density profiles are systematically compared with mean-field predictions derived through the Gross-Pitaevskii equation in the same conditions. T he phase space as a function of the interaction strengths and the relation between masses is quite rich. The miscibility criterion for the homogeneous system applies rather well to the system, with some discrepancies close to the critical line for separation. We observe significant differences between the mean-field results and the Monte Carlo ones, that magnify when the asymmetry between masses increases. In the analyzed interaction regime, we observe universality of our results which extend beyond the applicability regime for the Gross-Pitaevskii equation.
Employing a short-range two-channel description we derive an analytic model of atoms in isotropic and anisotropic harmonic traps at a Feshbach resonance. On this basis we obtain a new parameterization of the energy-dependent scattering length which d iffers from the one previously employed. We validate the model by comparison to full numerical calculations for Li-Rb and explain quantitatively the experimental observation of a resonance shift and trap-induced molecules in exited bands. Finally, we analyze the bound state admixture and Landau-Zener transition probabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا