ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial resolution of spin waves in an ultra-cold gas

72   0   0.0 ( 0 )
 نشر من قبل Jeffrey M. McGuirk
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first spatially resolved images of spin waves in a gas. The complete longitudinal and transverse spin field as a function of time and space is reconstructed. Frequencies and damping rates for a standing-wave mode are extracted and compared with theory.

قيم البحث

اقرأ أيضاً

Ultra-cold alkali atoms trapped in two distinct hyperfine states in an external magnetic field can mimic magnetic systems of spin 1/2 particles. We describe the spin-dependent effective interaction as a spin-spin interaction. As a consequence of the zero-range, the interaction of spin 1/2 bosons can be described as an Ising or, alternatively, as an XY-coupling. We calculated the spin-spin interaction parameters as a function of the external magnetic field in the Degenerate Internal State (DIS) approximation. We illustrate the advantage of the spin-spin interaction form by mapping the system of N spin 1/2 bosons confined by a tight trapping potential on that of N spin 1/2 spins coupled via an infinite range interaction.
We have performed precision microwave spectroscopy on ultra-cold Rb-87 confined in a magnetic trap, both above and below the Bose-condensation transition. The cold collision shifts for both normal and condensed clouds were measured, which allowed the intra- and inter-state density correlations (characterized by sometimes controversial factors of two) to be determined. Additionally, temporal coherence of the normal cloud was studied, and the importance of mean-field and velocity-changing collisions in preserving coherence is discussed.
One of the most striking features of the strong interactions between Rydberg atoms is the dipole blockade effect, which allows only a single excitation to the Rydberg state within the volume of the blockade sphere. Here we present a method that spati ally visualizes this phenomenon in an inhomogeneous gas of ultra-cold rubidium atoms. In our experiment we scan the position of one of the excitation lasers across the cold cloud and determine the number of Rydberg excitations detected as a function of position. Comparing this distribution to the one obtained for the number of ions created by a two-photon ionization process via the intermediate 5P level, we demonstrate that the blockade effect modifies the width of the Rydberg excitation profile. Furthermore, we study the dynamics of the Rydberg excitation and find that the timescale for the excitation depends on the atomic density at the beam position.
In this paper we study the density noise correlations of the two component Fermi gas in optical lattices. Three different type of phases, the BCS-state (Bardeen, Cooper, and Schieffer), the FFLO-state (Fulde, Ferrel, Larkin, and Ovchinnikov), and BP (breach pair) state, are considered. We show how these states differ in their noise correlations. The noise correlations are calculated not only at zero temperature, but also at non-zero temperatures paying particular attention to how much the finite temperature effects might complicate the detection of different phases. Since one-dimensional systems have been shown to be very promising candidates to observe FFLO states, we apply our results also to the computation of correlation signals in a one-dimensional lattice. We find that the density noise correlations reveal important information about the structure of the underlying order parameter as well as about the quasiparticle dispersions.
Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs t o be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a $^{87}$Rb magneto-optical trap with a peak optical depth of 1000 for the D2 $F=2 rightarrow F=3$ transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of $80pm 2$% and coherence times up to 195 $mu$s, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا