ﻻ يوجد ملخص باللغة العربية
We perform Monte Carlo simulations to determine the average excluded area $<A_{ex}>$ of randomly oriented squares, randomly oriented widthless sticks and aligned squares in two dimensions. We find significant differences between our results for randomly oriented squares and previous analytical results for the same. The sources of these differences are explained. Using our results for $<A_{ex}>$ and Monte Carlo simulation results for the percolation threshold, we estimate the mean number of connections per object $B_c$ at the percolation threshold for squares in 2-D. We study systems of squares that are allowed random orientations within a specified angular interval. Our simulations show that the variation in $B_c$ is within 1.6% when the angular interval is varied from 0 to $pi/2$.
The random Lorentz gas (RLG) is a minimal model for transport in disordered media. Despite the broad relevance of the model, theoretical grasp over its properties remains weak. For instance, the scaling with dimension d of its localization transition
This work studies the jamming and percolation of parallel squares in a single-cluster growth model. The Leath-Alexandrowicz method was used to grow a cluster from an active seed site. The sites of a square lattice were occupied by addition of the equ
We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and ti
We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order paramete
We study the very long-range bond-percolation problem on a linear chain with both sites and bonds dilution. Very long range means that the probability $p_{ij}$ for a connection between two occupied sites $i,j$ at a distance $r_{ij}$ decays as a power