ترغب بنشر مسار تعليمي؟ اضغط هنا

On the study of jamming percolation

122   0   0.0 ( 0 )
 نشر من قبل Monwhea Jeng
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and time scales. The models we investigate have constraints similar to that of the knights model, introduced by Toninelli, Biroli, and Fisher (TBF), but differing neighbor relations. We find that such knights-like models, otherwise known as models of jamming percolation, need a ``No Parallel Crossing rule for the TBF proof of a glassy transition to be valid. Furthermore, most knight-like models fail a ``No Perpendicular Crossing requirement, and thus need modification to be made rigorous. We also show how the ``No Parallel Crossing requirement can be used to evaluate the provable glassiness of other correlated percolation models, by looking at models with more stable directions than the knights model. Finally, we show that the TBF proof does not generalize in any straightforward fashion for three-dimensiona



قيم البحث

اقرأ أيضاً

This work studies the jamming and percolation of parallel squares in a single-cluster growth model. The Leath-Alexandrowicz method was used to grow a cluster from an active seed site. The sites of a square lattice were occupied by addition of the equ al size $k times k$ squares (E-problem) or a mixture of $k times k$ and $m times m$ ($m leqslant k$) squares (M-problem). The larger $k times k$ squares were assumed to be active (conductive) and the smaller $m times m$ squares were assumed to be blocked (non-conductive). For equal size $k times k$ squares (E-problem) the value of $p_j = 0.638 pm 0.001$ was obtained for the jamming concentration in the limit of $krightarrowinfty$. This value was noticeably larger than that previously reported for a random sequential adsorption model, $p_j = 0.564 pm 0.002$. It was observed that the value of percolation threshold $p_{mathrm{c}}$ (i.e., the ratio of the area of active $k times k$ squares and the total area of $k times k$ squares in the percolation point) increased with an increase of $k$. For mixture of $k times k$ and $m times m$ squares (M-problem), the value of $p_{mathrm{c}}$ noticeably increased with an increase of $k$ at a fixed value of $m$ and approached 1 at $kgeqslant 10m$. This reflects that percolation of larger active squares in M-problem can be effectively suppressed in the presence of smaller blocked squares.
109 - M. Jeng , J. M. Schwarz 2008
We study models of correlated percolation where there are constraints on the occupation of sites that mimic force-balance, i.e. for a site to be stable requires occupied neighboring sites in all four compass directions in two dimensions. We prove rig orously that $p_c<1$ for the two-dimensional models studied. Numerical data indicate that the force-balance percolation transition is discontinuous with a growing crossover length, with perhaps the same form as the jamming percolation models, suggesting the same underlying mechanism driving the transition in both cases. In other words, force-balance percolation and jamming percolation may indeed belong to the same universality class. We find a lower bound for the correlation length in the connected phase and that the correlation function does not appear to be a power law at the transition. Finally, we study the dynamics of the culling procedure invoked to obtain the force-balance configurations and find a dynamical exponent similar to that found in sandpile models.
We present a novel mechanism for the anomalous behaviour of the specific heat in low-temperature amorphous solids. The analytic solution of a mean-field model belonging to the same universality class as high-dimensional glasses, the spherical percept ron, suggests that there exists a crossover temperature above which the specific heat scales linearly with temperature while below it a cubic scaling is displayed. This relies on two crucial features of the phase diagram: (i) The marginal stability of the free-energy landscape, which induces a gapless phase responsible for the emergence of a power-law scaling (ii) The vicinity of the classical jamming critical point, as the crossover temperature gets lowered when approaching it. This scenario arises from a direct study of the thermodynamics of the system in the quantum regime, where we show that, contrary to crystals, the Debye approximation does not hold.
We study bond percolation on several four-dimensional (4D) lattices, including the simple (hyper) cubic (SC), the SC with combinations of nearest neighbors and second nearest neighbors (SC-NN+2NN), the body-centered cubic (BCC), and the face-centered cubic (FCC) lattices, using an efficient single-cluster growth algorithm. For the SC lattice, we find $p_c = 0.1601312(2)$, which confirms previous results (based on other methods), and find a new value $p_c=0.035827(1)$ for the SC-NN+2NN lattice, which was not studied previously for bond percolation. For the 4D BCC and FCC lattices, we obtain $p_c=0.074212(1)$ and 0.049517(1), which are substantially more precise than previous values. We also find critical exponents $tau = 2.3135(5)$ and $Omega = 0.40(3)$, consistent with previous numerical results and the recent four-loop series result of Gracey [Phys. Rev. D 92, 025012, (2015)].
We study bond percolation on the simple cubic (SC) lattice with various combinations of first, second, third, and fourth nearest-neighbors by Monte Carlo simulation. Using a single-cluster growth algorithm, we find precise values of the bond threshol ds. Correlations between percolation thresholds and lattice properties are discussed, and our results show that the percolation thresholds of these and other three-dimensional lattices decrease monotonically with the coordination number $z$ quite accurately according to a power law $p_{c} sim z^{-a}$, with exponent $a = 1.111$. However, for large $z$, the threshold must approach the Bethe lattice result $p_c = 1/(z-1)$. Fitting our data and data for lattices with additional nearest neighbors, we find $p_c(z-1)=1+1.224 z^{-1/2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا