ﻻ يوجد ملخص باللغة العربية
The random Lorentz gas (RLG) is a minimal model for transport in disordered media. Despite the broad relevance of the model, theoretical grasp over its properties remains weak. For instance, the scaling with dimension d of its localization transition at the void percolation threshold is not well controlled analytically nor computationally. A recent study [Biroli et al. Phys. Rev. E L030104 (2021)] of the caging behavior of the RLG motivated by the mean-field theory of glasses has uncovered physical inconsistencies in that scaling that heighten the need for guidance. Here, we first extend analytical expectations for asymptotic high-d bounds on the void percolation threshold, and then computationally evaluate both the threshold and its criticality in various d. In high-d systems, we observe that the standard percolation physics is complemented by a dynamical slowdown of the tracer dynamics reminiscent of mean-field caging. A simple modification of the RLG is found to bring the interplay between percolation and mean-field-like caging down to d=3.
The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated by neutron scattering for H>0. A low-temperature (T<11K), low-field (H<1T) pseudophase transition boundary separates a partially antiferromagnetically ordered phase from the
For random matrices with tree-like structure there exists a recursive relation for the local Green functions whose solution permits to find directly many important quantities in the limit of infinite matrix dimensions. The purpose of this note is to
We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit non-ergodic behavior at strong disorder. The analysis is convenien
We perform Monte Carlo simulations to determine the average excluded area $<A_{ex}>$ of randomly oriented squares, randomly oriented widthless sticks and aligned squares in two dimensions. We find significant differences between our results for rando
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems wit