ﻻ يوجد ملخص باللغة العربية
The aim of this work is to study the spectral statistics of the asymmetric rotor model (triaxial rigid rotator). The asymmetric top is classically integrable and, according to the Berry-Tabor theory, its spectral statistics should be Poissonian. Surprisingly, our numerical results show that the nearest neighbor spacing distribution $P(s)$ and the spectral rigidity $Delta_3(L)$ do not follow Poisson statistics. In particular, $P(s)$ shows a sharp peak at $s=1$ while $Delta_3(L)$ for small values of $L$ follows the Poissonian predictions and asymptotically it shows large fluctuations around its mean value. Finally, we analyze the information entropy, which shows a dissolution of quantum numbers by breaking the axial symmetry of the rigid rotator.
We investigate the spectral statistics of the asymmetric rotor model (triaxial rigid rotator). The asymmetric top is classically integrable and, according to the Berry-Tabor theory, its spectral statistics should be Poissonian. Surprisingly, our nume
We introduce an asymmetric classical Ginzburg-Landau model in a bounded interval, and study its dynamical behavior when perturbed by weak spatiotemporal noise. The Kramers escape rate from a locally stable state is computed as a function of the inter
We consider steady-state current activity statistics for the one-dimensional totally asymmetric simple exclusion process (TASEP). With the help of the known operator algebra (for general open boundary conditions), as well as general probabilistic con
We study Kleinberg navigation (the search of a target in a d-dimensional lattice, where each site is connected to one other random site at distance r, with probability proportional to r^{-a}) by means of an exact master equation for the process. We s
The quantum kicked rotor (QKR) driven by $d$ incommensurate frequencies realizes the universality class of $d$-dimensional disordered metals. For $d>3$, the system exhibits an Anderson metal-insulator transition which has been observed within the fra