ﻻ يوجد ملخص باللغة العربية
We introduce an asymmetric classical Ginzburg-Landau model in a bounded interval, and study its dynamical behavior when perturbed by weak spatiotemporal noise. The Kramers escape rate from a locally stable state is computed as a function of the interval length. An asymptotically sharp second-order phase transition in activation behavior, with corresponding critical behavior of the rate prefactor, occurs at a critical length l_c, similar to what is observed in symmetric models. The weak-noise exit time asymptotics, to both leading and subdominant orders, are analyzed at all interval lengthscales. The divergence of the prefactor as the critical length is approached is discussed in terms of a crossover from non-Arrhenius to Arrhenius behavior as noise intensity decreases. More general models without symmetry are observed to display similar behavior, suggesting that the presence of a ``phase transition in escape behavior is a robust and widespread phenomenon.
The original perturbative Kramers method (starting from the phase space coordinates) (Kramers, 1940) of determining the energy-controlled-diffusion equation for Newtonian particles with separable and additive Hamiltonians is generalized to yield the
For a mean-field classical spin system exhibiting a second-order phase transition in the stationary state, we obtain within the corresponding phase space evolution according to the Vlasov equation the values of the critical exponents describing power
We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW-ansatz by bot
We determine the rate of escape from a potential well, and the diffusion coefficient in a periodic potential, of a random walker that moves under the influence of the potential in between successive collisions with the heat bath. In the overdamped li
The entropy production rate (EPR) offers a quantitative measure of time reversal symmetry breaking in non-equilibrium systems. It can be defined either at particle level or at the level of coarse-grained fields such as density; the EPR for the latter