ﻻ يوجد ملخص باللغة العربية
We study Kleinberg navigation (the search of a target in a d-dimensional lattice, where each site is connected to one other random site at distance r, with probability proportional to r^{-a}) by means of an exact master equation for the process. We show that the asymptotic scaling behavior for the delivery time T to a target at distance L scales as (ln L)^2 when a=d, and otherwise as L^x, with x=(d-a)/(d+1-a) for a<d, x=a-d for d<a<d+1, and x=1 for a>d+1. These values of x exceed the rigorous lower-bounds established by Kleinberg. We also address the situation where there is a finite probability for the message to get lost along its way and find short delivery times (conditioned upon arrival) for a wide range of as.
We calculate exponential growth constants describing the asymptotic behavior of several quantities enumerating classes of orientations of arrow variables on the bonds of several types of directed lattice strip graphs $G$ of finite width and arbitrari
We investigate the low-temperature behavior of two-dimensional (2D) RP$^{N-1}$ models, characterized by a global O($N$) symmetry and a local ${mathbb Z}_2$ symmetry. For $N=3$ we perform large-scale simulations of four different 2D lattice models: tw
Many sociological networks, as well as biological and technological ones, can be represented in terms of complex networks with a heterogeneous connectivity pattern. Dynamical processes taking place on top of them can be very much influenced by this t
We study the phase transition of the Ising model in networks with core-periphery structures. By Monte Carlo simulations, we show that prior to the order-disorder phase transition the system organizes into an inhomogeneous intermediate phase in which
Reassessment of the critical temperature and density of the restricted primitive model of an ionic fluid by Monte Carlo simulations performed for system sizes with linear dimension up to $L/sigma=34$ and sampling of $sim 10^9$ trial moves leads to $T