ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical, Infrared, and Ultraviolet Observations of the X-Ray Flash GRB 050416A

286   0   0.0 ( 0 )
 نشر من قبل Stephen Holland
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. T. Holland




اسأل ChatGPT حول البحث

We present ultraviolet, optical, and infrared photometry of the afterglow of the X-ray flash XRF 050416A taken between approximately 100 seconds and 36 days after the burst. We find an intrinsic spectral slope between 1930 and 22,200 Angstrom of beta = -1.14 +/- 0.20 and a decay rate of alpha = -0.86 +/- 0.15. There is no evidence for a change in the decay rate between approximately 0.7 and 4.7 days after the burst. Our data implies that there is no spectral break between the optical and X-ray bands between 0.7 and 4.7 days after the burst, and is consistent with the cooling break being redward of the K_s band (22,200 Angstrom) at 0.7 days. The combined ultraviolet/optical/infrared spectral energy distribution shows no evidence for a significant amount of extinction in the host galaxy along the line of sight to XRF 050416A. Our data suggest that the extragalactic extinction along the line of sight to the burst is only approximately A_V = 0.2 mag, which is significantly less than the extinction expected from the hydrogen column density inferred from $X$-ray observations of XRF 050416A assuming a dust-to-gas ratio similar to what is found for the Milky Way. The observed extinction, however, is consistent with the dust-to-gas ratio seen in the Small Magellanic Cloud. We suggest that XRF 050416A may have a two-component jet similar to what has been proposed for GRB 030329. If this is the case the lack of an observed jet break between 0.7 and 42 days is an illusion due to emission from the wide jet dominating the afterglow after approximately 1.5 days.



قيم البحث

اقرأ أيضاً

121 - D. Watson 2004
GRB031203 was observed by XMM-Newton twice, first with an observation beginning 6 hours after the burst, and again after 3 days. The afterglow had average 0.2-10.0keV fluxes for the first and second observations of 4.2+/-0.1x10^-13 and 1.8+/-0.1x10^- 13 erg/cm^2/s respectively, decaying very slowly according to a power-law with an index of -0.55+/-0.05. The prompt soft X-ray flux, inferred from a detection of the dust echo of the prompt emission, strongly implies that this burst is very soft and should be classified as an X-ray flash (XRF) and further, implies a steep temporal slope (<~-1.7) between the prompt and afterglow phases or in the early afterglow, very different from the later afterglow decay slope. A power-law (Gamma=1.90+/-0.05) with absorption at a level consistent with the Galactic foreground absorption fits the afterglow spectrum well. A bright, low-redshift (z=0.105) galaxy lies within 0.5 arcsec of the X-ray position and is likely to be the GRB host. At this redshift, GRB031203 is the closest GRB or XRF known after GRB980425. It has a very low equivalent isotropic gamma-ray energy in the burst (~3x10^49 erg) and X-ray luminosity in the afterglow (9x10^42 erg/s at 10 hours), 3-4 orders of magnitude less than typical bursts, though higher than either the faint XRF020903 or GRB980425. The rapid initial decline and subsequent very slow fading of the X-ray afterglow is also similar to that observed in GRB980425, indicating that GRB031203 may be representative of low luminosity bursts.
The optical light that is generated simultaneously with the x-rays and gamma-rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse to form black holes. We report on the bright optic al flash and fading afterglow from the powerful burst GRB 130427A and present a comparison with the properties of the gamma-ray emission that show correlation of the optical and >100 MeV photon flux light curves during the first 7,000 seconds. We attribute this correlation to co-generation in an external shock. The simultaneous, multi-color, optical observations are best explained at early times by reverse shock emission generated in the relativistic burst ejecta as it collides with surrounding material and at late times by a forward shock traversing the circumburst environment. The link between optical afterglow and >100 MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying GRB emission at GeV/TeV energies.
A long X-ray flash was detected and localized by the instruments aboard the High Energy Transient Explorer II (HETE-2) at 00:03:30 UT on 2004 September 16. The position was reported to the GRB Coordinates Network (GCN) approximately 2 hours after the burst. This burst consists of two peaks separated by 200 s, with durations of 110 s and 60 s. We have analyzed the energy spectra of the 1st and 2nd peaks observed with the Wide Field X-Ray Monitor (WXM) and the French Gamma Telescope (FREGATE). We discuss the origin of the 2nd peak in terms of flux variabilities and timescales. We find that it is most likely part of the prompt emission, and is explained by the long-acting engine model. This feature is similar to some bright X-ray flares detected in the early afterglow phase of bursts observed by the Swift satellite.
202 - C. Zurita 2010
We performed an optical/infrared study of the counterpart of the low-mass X-ray binary KS1731-260 to test its identification and obtain information about the donor. Optical and infrared images of the counterpart of KS1731-260 were taken in two differ ent epochs (2001 and 2007) after the source returned to quiescence in X-rays. We compared those observations with obtained when KS 1731-260 was still active. We confirm the identification of KS1731-260 with the previously proposed counterpart and improve its position to RA=17:34:13.46 and DEC=-26:05:18.60. The H-band magnitude of this candidate showed a decline of ~1.7 mags from outburst to quiescence. In 2007 April we obtained R=22.8+-0.1 and I=20.9+-0.1 for KS1731-260. Similar optical brightness was measured in June 2001 and July 2007. The intrinsic optical color R-I is consistent with spectral types from F to G for the secondary although there is a large excess over that from the secondary at the infrared wavelengths. This may be due to emission from the cooler outer regions of the accretion disk. We cannot rule out a brown dwarf as a donor star, although it would require that the distance to the source is significantly lower than the 7 kpc reported by Muno et al. 2000.
202 - Yuji Urata 2015
We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRBs) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak ener gy of the prompt spectrum $E^{src}_{obs}$, (2) redshift measurements, and (3) multi-color observations of an earlier (or brightening) phase. XRF020903 was the only sample selected basis of these criteria. A complete optical multi-color afterglow light curve of XRF020903 obtained from archived data and photometric results in literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, $theta_{jet}$) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle ($>sim2theta_{jet}$) could be discovered using an 8-m class telescope with wide field imagers such as Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا