ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical/infrared observations of the X-ray burster KS1731-260 in quiescence

104   0   0.0 ( 0 )
 نشر من قبل Cristina Zurita
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Zurita




اسأل ChatGPT حول البحث

We performed an optical/infrared study of the counterpart of the low-mass X-ray binary KS1731-260 to test its identification and obtain information about the donor. Optical and infrared images of the counterpart of KS1731-260 were taken in two different epochs (2001 and 2007) after the source returned to quiescence in X-rays. We compared those observations with obtained when KS 1731-260 was still active. We confirm the identification of KS1731-260 with the previously proposed counterpart and improve its position to RA=17:34:13.46 and DEC=-26:05:18.60. The H-band magnitude of this candidate showed a decline of ~1.7 mags from outburst to quiescence. In 2007 April we obtained R=22.8+-0.1 and I=20.9+-0.1 for KS1731-260. Similar optical brightness was measured in June 2001 and July 2007. The intrinsic optical color R-I is consistent with spectral types from F to G for the secondary although there is a large excess over that from the secondary at the infrared wavelengths. This may be due to emission from the cooler outer regions of the accretion disk. We cannot rule out a brown dwarf as a donor star, although it would require that the distance to the source is significantly lower than the 7 kpc reported by Muno et al. 2000.

قيم البحث

اقرأ أيضاً

363 - N. Rea 2011
We report on a 63ks Chandra observation of the X-ray transient Swift J195509.6+261406 discovered as the afterglow of what was first believed to be a long duration Gamma-Ray Burst (GRB 070610). The outburst of this source was characterized by unique o ptical flares on timescales of second or less, morphologically similar to the short X-ray bursts usually observed from magnetars. Our Chandra observation was performed ~2 years after the discovery of the optical and X-ray flaring activity of this source, catching it in its quiescent state. We derive stringent upper limits on the quiescent emission of Swif J195509.6+261406 which argues against the possibility of this object being a typical magnetar. Our limits show that the most viable interpretation on the nature of this peculiar bursting source, is a binary system hosting a black hole or a neutron star with a low mass companion star (< 0.12 M_{odot}), and with an orbital period smaller than a few hours.
GS 1826-238 is a well-studied X-ray bursting neutron star in a low mass binary system. Thermal Comptonisation by a hot electron cloud is a widely accepted mechanism accounting for its high energy emission, while the nature of most of its soft X-ray o utput is not completely understood. A further low energy component is typically needed to model the observed spectra: pure blackbody and Comptonisation-modified blackbody radiation by a lower temperature (a few keV) electron plasma were suggested to explain the low energy data. We studied the steady emission of GS 1826-238 by means of broad band (X to soft Gamma-rays) measurements obtained by the INTEGRAL observatory in 2003 and 2006. The newly developed, up-to-date Comptonisation model CompTB is applied for the first time to study effectively the low-hard state variability of a low-luminosity neutron star in a low-mass X-ray binary system. We confirm that the 3-200 keV emission of GS is characterised by Comptonisation of soft seed photons by a hot electron plasma. A single spectral component is sufficient to model the observed spectra. At lower energies, no direct blackbody emission is observed and there is no need to postulate a low temperature Compton region. Compared to the 2003 measurements, the plasma temperature decreased from 20 to 14 keV in 2006, together with the seed photons temperature. The source intensity was also found to be 30% lower in 2006, whilst the average recurrence frequency of the X-ray bursts significantly increased. Possible explanations for this apparent deviation from the typical limit-cycle behaviour of this burster are discussed.
4U 1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states bec ause it shows clear spectral state transitions. The broadband coverage, the sensitivity and energy resolution of the BeppoSAX satellite offers the opportunity to disentangle the components that form the total X-ray spectrum and to study their changes according to the spectral state. Using two BeppoSAX observations carried out in August and October 2000, respectively, for a total effective exposure time of about 100 ks, we study the spectral evolution of the source from a soft to hard state. Energy spectra are selected according to the source position in the color-color diagram (CCD) Results. We succeeded in modeling the spectra of the source using a physical self-consistent scenario for both the island and banana branches (the double Comptonization scenario). The components observed are the soft Comptonization and hard Comptonization, the blackbody, and a reflection component with a broad iron line. When the source moves from the banana state to the island state, the parameters of the two Comptonization components change significantly and the blackbody component becomes too weak to be detected. We interpret the soft Comptonization component as emission from the hot plasma surrounding the neutron star, hard Comptonization as emission from the disk region, and the blackbody component as emission from the inner accretion disk. The broad feature in the iron line region is compatible with reflection from the inner accretion disk.
We have analyzed 3 observations of the High Mass X-ray Binary A0535+26 performed by the Rossi X-ray Timing Explorer (RXTE) 3, 5, and 6 months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Re-analysis of 2 earlier RXTE observations made 4 years after the 1994 outburst, original BeppoSAX observations 2 years later, re-analysis of 4 EXOSAT observations made 2 years after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from ~2 to <1 x 10^{-11} ergs/cm2/s over 6.5 years after outburst. Detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built-up at the corotation radius or from an isotropic stellar wind.
We have obtained exposures of the field of X0512-401 in the globular cluster NGC1851, in X-rays with the Chandra X-ray Observatory, and in the far-UV with the Hubble Space Telescope. We derive an accurate new X-ray position within ~1 for X0512-401, w hich enables us to confirm that the only plausible candidate for the optical/UV counterpart is the Star A, which we previously identified from WFPC2 imaging. We find no evidence for X-ray or UV flux modulation on the ultra-short (<1 hr) expected binary period, which implies a low system inclination. In addition, we have detected and spatially resolved an X-ray burst event, confirming the association of the burster, quiescent X-ray source, and optical object. The very large Lx/Lopt of this object implies an extraordinarily compact system, similar to the sources in NGC6624 and NGC6712.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا