ﻻ يوجد ملخص باللغة العربية
GRB031203 was observed by XMM-Newton twice, first with an observation beginning 6 hours after the burst, and again after 3 days. The afterglow had average 0.2-10.0keV fluxes for the first and second observations of 4.2+/-0.1x10^-13 and 1.8+/-0.1x10^-13 erg/cm^2/s respectively, decaying very slowly according to a power-law with an index of -0.55+/-0.05. The prompt soft X-ray flux, inferred from a detection of the dust echo of the prompt emission, strongly implies that this burst is very soft and should be classified as an X-ray flash (XRF) and further, implies a steep temporal slope (<~-1.7) between the prompt and afterglow phases or in the early afterglow, very different from the later afterglow decay slope. A power-law (Gamma=1.90+/-0.05) with absorption at a level consistent with the Galactic foreground absorption fits the afterglow spectrum well. A bright, low-redshift (z=0.105) galaxy lies within 0.5 arcsec of the X-ray position and is likely to be the GRB host. At this redshift, GRB031203 is the closest GRB or XRF known after GRB980425. It has a very low equivalent isotropic gamma-ray energy in the burst (~3x10^49 erg) and X-ray luminosity in the afterglow (9x10^42 erg/s at 10 hours), 3-4 orders of magnitude less than typical bursts, though higher than either the faint XRF020903 or GRB980425. The rapid initial decline and subsequent very slow fading of the X-ray afterglow is also similar to that observed in GRB980425, indicating that GRB031203 may be representative of low luminosity bursts.
The X-Ray Flash (XRF), 031203 with a host galaxy at z=0.1055, is, apart from GRB980425, the closest Gamma-Ray Burst (GRB) or XRF known to date. We monitored its host galaxy from 1-100 days after the burst. In spite of the high extinction to the sourc
V405 Peg is a low-luminosity cataclysmic variable (CV) that was identified as the optical counterpart of the bright, high-latitude ROSAT all-sky survey source RBS1955. The system was suspected to belong to a largely undiscovered population of hiberna
We present results from our Chandra and XMM-Newton observations of two low-luminosity X-ray pulsators SAX J1324.4-6200 and SAX J1452.8-5949 which have spin-periods of 172 s and 437 s respectively. The XMM-Newton spectra for both sources can be fitted
We analyzed two XMM-Newton observations in the direction of the high density, high latitude, neutral hydrogen cloud MBM20 and of a nearby low density region that we called the Eridanus hole. The cloud MBM20 is at a distance evaluated between 100 and
We present the results of two XMM-Newton observations of Jupiter carried out in 2003 for 100 and 250 ks (or 3 and 7 planet rotations) respectively. X-ray images from the EPIC CCD cameras show prominent emission from the auroral regions in the 0.2 - 2