ترغب بنشر مسار تعليمي؟ اضغط هنا

A very low luminosity X-ray flash: XMM-Newton observations of GRB 031203

122   0   0.0 ( 0 )
 نشر من قبل Darach Watson
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Watson




اسأل ChatGPT حول البحث

GRB031203 was observed by XMM-Newton twice, first with an observation beginning 6 hours after the burst, and again after 3 days. The afterglow had average 0.2-10.0keV fluxes for the first and second observations of 4.2+/-0.1x10^-13 and 1.8+/-0.1x10^-13 erg/cm^2/s respectively, decaying very slowly according to a power-law with an index of -0.55+/-0.05. The prompt soft X-ray flux, inferred from a detection of the dust echo of the prompt emission, strongly implies that this burst is very soft and should be classified as an X-ray flash (XRF) and further, implies a steep temporal slope (<~-1.7) between the prompt and afterglow phases or in the early afterglow, very different from the later afterglow decay slope. A power-law (Gamma=1.90+/-0.05) with absorption at a level consistent with the Galactic foreground absorption fits the afterglow spectrum well. A bright, low-redshift (z=0.105) galaxy lies within 0.5 arcsec of the X-ray position and is likely to be the GRB host. At this redshift, GRB031203 is the closest GRB or XRF known after GRB980425. It has a very low equivalent isotropic gamma-ray energy in the burst (~3x10^49 erg) and X-ray luminosity in the afterglow (9x10^42 erg/s at 10 hours), 3-4 orders of magnitude less than typical bursts, though higher than either the faint XRF020903 or GRB980425. The rapid initial decline and subsequent very slow fading of the X-ray afterglow is also similar to that observed in GRB980425, indicating that GRB031203 may be representative of low luminosity bursts.

قيم البحث

اقرأ أيضاً

242 - B. Thomsen 2004
The X-Ray Flash (XRF), 031203 with a host galaxy at z=0.1055, is, apart from GRB980425, the closest Gamma-Ray Burst (GRB) or XRF known to date. We monitored its host galaxy from 1-100 days after the burst. In spite of the high extinction to the sourc e and the bright host, a significant increase and subsequent decrease has been detected in the apparent brightness of the host, peaking between 10 and 33 days after the GRB. The only convincing explanation is a supernova (SN) associated with the XRF, SN2003lw. This is the earliest time at which a SN signal is clearly discernible in a GRB/XRF (apart from SN1998bw). SN2003lw is extremely luminous with a broad peak and can be approximately represented by the lightcurve of SN1998bw brightened by ~0.55 mag, implying a hypernova, as observed in most GRB-SNe. The XRF-SN association firmly links XRFs with the deaths of massive stars and further strengthens their connection with GRBs. The fact that SNe are also associated with XRFs implies that Swift may detect a significant population of intermediate redshift SNe very soon after the SN explosions, a sample ideally suited for detailed studies of early SN physics.
V405 Peg is a low-luminosity cataclysmic variable (CV) that was identified as the optical counterpart of the bright, high-latitude ROSAT all-sky survey source RBS1955. The system was suspected to belong to a largely undiscovered population of hiberna ting CVs. Despite intensive optical follow-up its subclass however remained undetermined. We want to further classify V405 Peg and understand its role in the CV zoo via its long-term behaviour, spectral properties, energy distribution and accretion luminosity. We perform a spectral and timing analysis of textit{XMM-Newton} X-ray and ultra-violet data. Archival WISE, HST, and Swift observations are used to determine the spectral energy distribution and characterize the long-term variability. The X-ray spectrum is characterized by emission from a multi-temperature plasma. No evidence for a luminous soft X-ray component was found. Orbital phase-dependent X-ray photometric variability by $sim50%$ occurred without significant spectral changes. No further periodicity was significant in our X-ray data. The average X-ray luminosity during the XMM-Newton observations was L_X, bol simeq 5e30 erg/s but, based on the Swift observations, the corresponding luminosity varied between 5e29 erg/s and 2e31 erg/son timescales of years. The CV subclass of this object remains elusive. The spectral and timing properties show commonalities with both classes of magnetic and non-magnetic CVs. The accretion luminosity is far below than that expected for a standard accreting CV at the given orbital period. Objects like V405 Peg might represent the tip of an iceberg and thus may be important contributors to the Galactic Ridge X-ray Emission. If so they will be uncovered by future X-ray surveys, e.g. with eROSITA.
We present results from our Chandra and XMM-Newton observations of two low-luminosity X-ray pulsators SAX J1324.4-6200 and SAX J1452.8-5949 which have spin-periods of 172 s and 437 s respectively. The XMM-Newton spectra for both sources can be fitted well with a simple power-law model of photon index ~ 1.0. A black-body model can equally well fit the spectra with a temperature of ~ 2 keV for both sources. During our XMM-Newton observations, SAX J1324.4-6200 is detected with coherent X-ray pulsations at a period of $172.86 pm 0.02$ s while no pulsations with a pulse fraction greater than 15% (at 98% confidence level) are detected in SAX J1452.8--5949. The spin period of SAX J1324.4-6200 is found to be increasing on a time-scale of $dot{P}$ = $(6.34 pm 0.08) times 10^{-9}$ s s$^{-1}$ which would suggest that the accretor is a neutron star and not a white dwarf. Using sub-arcsec spatial resolution of the Chandra telescope, possible counterparts are seen for both sources in the near-infrared images obtained with the SOFI instrument on the New Technology Telescope. The X-ray and near-infrared properties of SAX J1324.4-6200 suggest it to be either a persistent high mass accreting X-ray pulsar or a symbiotic X-ray binary pulsar at a distance $le$ 9 kpc. We identify the infrared counterpart of SAX J1452.8--5949 to be a late-type main sequence star at a distance $le$ 10 kpc, thus ruling out SAX J1452.8--5949 to be a high mass X-ray binary. However with the present X-ray and near-infrared observations, we cannot make any further conclusive conclusion about the nature of SAX J1452.8-5949.
207 - M. Galeazzi , A. Gupta , K. Covey 2006
We analyzed two XMM-Newton observations in the direction of the high density, high latitude, neutral hydrogen cloud MBM20 and of a nearby low density region that we called the Eridanus hole. The cloud MBM20 is at a distance evaluated between 100 and 200 pc from the Sun and its density is sufficiently high to shield about 75% of the foreground emission in the 3/4 keV energy band.The combination of the two observations makes possible an evaluation of the OVII and OVIII emission both for the foreground component due to the Local Bubble,and the background one, due primary to the galactic halo.The two observations are in good agreement with each other and with ROSAT observations of the same part of the sky and the OVII and OVIII fluxes are OVII=3.89+/-0.56 photons cm^-2 s^-1 sr^-1, OVIII=0.68+/-0.24 photons cm^-2 s^-1 sr^-1 for MBM20 and OVII=7.26+/-0.34 photons cm^-2 s^-1 sr^-1,OVIII=1.63+/-0.17 photons cm^-2 s^-1 sr^-1 for the Eridanus hole. The spectra are in agreement with a simple three component model, one unabsorbed and one absorbed plasma component, and a power law, without evidence for any strong contamination from ion exchange in the solar system. Assuming that the two plasma components are in thermal equilibrium we obtain a temperature of 0.096 keV for the foreground component and 0.197 keV for the background one. Assuming the foreground component is due solely to Local Bubble emission we obtain a lower and upper limit for the plasma density of 0.0079 cm^-3 and 0.0095 cm^-3 and limits of 16,200 cm^-3 K and 19,500 cm^-3 K for the plasma pressure, in good agreement with theoretical predictions. Similarly, assuming that the absorbed plasma component is due to Galactic halo emission, we obtain a plasma density ranging from 0.0009 cm^-3 to 0.0016 cm^-3, and a pressure ranging from 3.0*10^3 to 6.7*10^3 cm^-3 K.
We present the results of two XMM-Newton observations of Jupiter carried out in 2003 for 100 and 250 ks (or 3 and 7 planet rotations) respectively. X-ray images from the EPIC CCD cameras show prominent emission from the auroral regions in the 0.2 - 2 .0 keV band: the spectra are well modelled by a combination of emission lines, including most prominently those of highly ionised oxygen (OVII and OVIII). In addition, and for the first time, XMM-Newton reveals the presence in both aurorae of a higher energy component (3 - 7 keV) which is well described by an electron bremsstrahlung spectrum. This component is found to be variable in flux and spectral shape during the Nov. 2003 observation, which corresponded to an extended period of intense solar activity. Emission from the equatorial regions of Jupiters disk is also observed, with a spectrum consistent with that of solar X-rays scattered in the planets upper atmosphere. Jupiters X-rays are spectrally resolved with the RGS which clearly separates the prominent OVII contribution of the aurorae from the OVIII, FeXVII and MgXI lines, originating in the low-latitude disk regions of the planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا